
Modelling and Control of an Aerial
Manipulator

Paul Lassen (s182864)
Master of Science in Engineering
2021

Modelling and Control of an Aerial
Manipulator

Report written by:
Paul Lassen (s182864)

Advisor(s):
Matteo Fumagalli, Associate Professor at the Electrical Engineering Department of DTU

DTU Electrical Engineering
Technical University of Denmark
2800 Kgs. Lyngby
Denmark

elektro@elektro.dtu.dk

Project period: 25 February 2021- 23 April 2021

ECTS: 35

Education: M.Sc.

Field: Electrical Engineering

Class: Public

Edition: 1. edition

Remarks: This report is submitted as partial fulfillment of the requirements for gradu-
ation in the above education at the Technical University of Denmark.

Copyrights: ©Paul Lassen, 2021

Abstract
Motivated by surface contact applications, such as contact inspection, drilling, and pol-
ishing, the active area of research in aerial manipulators promises to expand the task
space of UAVs. One thing that has not been studied is what can be done with the
simplest manipulators using standard flight controllers. This thesis fills this gap by
considering two simple manipulator configurations, controlled by an industry standard
flight controller and UAV platform.
A dynamic model of static contact is developed to evaluate the limits of force application
for the different manipulator configurations. A simulation model and experimentation
with a physical UAV are used to verify the analysis of the dynamic model.
The maximum achievable contact force is found for each manipulator configuration.
The effects of several UAV design parameters are presented and suggestions are made
for maximizing the realisable contact force.

ii

Acknowledgements
I wish to thank Matteo Fumagalli for sending me on this journey and advising me.
I am grateful to the help and support I received from Kristian Weber Larsen both in
constructing the UAV and in managing my project. Additionally I thank David Wuthier
for lending his expertise and skills to my aid. I wish to extend my gratitude to my dear
friends Brynjar Sævarsson, Rishav Bose and Nichlas Max Bjørndal who lent me several
hours of their time in proof reading this document.
I am indebted to my brother, Philip, who provided me with new view points with which
to tackle my research.
Lastly I would like to give a special thanks to my parents, who provided me with a
sanctuary where I could find the peace of mind to complete this thesis in a tumultuous
time; my mother, Sharmila, who provided a bottomless supply of fresh meals and moral
support and my father, Søren Lassen, whose patience and guidance are likely the only
reason I was able to finish this thesis.

iv

Contents
Abstract i

Acknowledgements iii

Contents v

1 Introduction 1

2 Background 3

3 Free Flight 5
3.1 Dynamic Model . 6
3.2 Simulation of the Dynamic Model . 9
3.3 Controllers . 13
3.4 Test Setup . 23
3.5 Verification . 35
3.6 Summary . 37

4 Contact 39
4.1 Dynamic Model . 40
4.2 Controller . 49
4.3 Simulation . 56
4.4 Experimentation . 62
4.5 1-DOF Manipulator . 69
4.6 Discussion . 79

5 Conclusion 81

A Source Code 83

Bibliography 119

vi

CHAPTER 1
Introduction

Over the last 20 years, Unmanned Aerial Vehicles (UAVs) have captured the interest of
robotics researchers and society at large, showing promise in a broad range of application
areas, including film, last-mile delivery, survey and mapping, surveillance, and inspection.
The typical payloads for UAVs are sensor packages which take advantage of the mobility
and range afforded by the UAV. More recent research has begun to investigate their
potential as flying manipulators, capable of physically interacting with the surrounding
environment. Unlocking this capability would enable UAVs to take on a much broader
range of applications, including tasks which currently pose a risk of injury to the people
performing them. The real world applications motivating this thesis are surface contact
tasks, including contact inspection, drilling, and polishing, involving walls and wall-like
surfaces.
UAVs come in a variety of form factors, but the most accessible of them is the multirotor.
Multirotors are also simpler to construct and fly than other UAV platforms, making
them a popular choice. The ability to hover and move freely in 3 dimensions allows
the multirotor to navigate complex confined environments providing it access to difficult
and potentially dangerous spaces. This ability to hover serves to make multirotors the
ideal platform for investigating physical interaction. Even among multirotors, there are
variety of configurations, including tilt rotors, non-coplanar and coplanar configurations.
The most common among them, by a wide margin, are coplanar multirotors.
While their aerial nature provides them with maneuverability, it also poses unique chal-
lenges to the task of physical interaction. Without a rigid surface to support them, UAVs
must not only generate the desired contact forces, but also counteract the resultant forces
and torques from the environment. All while remaining in flight.
To tackle the task of physical interaction, there are three main dimensions of research.
First, there are varied form factors for UAVs, as mentioned above. Second, there are
different manipulator arm designs, from full three joint robot arms to more specialized
designs. Finally, several control schemes have been developed to deal with the challenges
of physical interaction.
As the price of UAVs continues to fall, multirotors are becoming more and more available
to hobbyists and other consumers and a relevant question then becomes: what are the
capabilities of these consumer and hobbyist grade UAVs?
This thesis seeks to address this question. The goal of this project is to evaluate the capa-
bilities and limitations of a UAV in contact with a surface using a consumer grade flight

2 1 Introduction

controller. To this end, a coplanar hexarotor outfitted with the popular, open-source
Pixhawk 4 flight controller and the ubiquitous Raspberry Pi 3 is modelled, simulated,
and tested to evaluate the potential of such a platform when equipped with a simple
manipulator.
The objectives of this project are to

• Develop a dynamic model of a UAV and manipulator in free flight and in contact
with a surface

• Simulate the aerial manipulator in free flight and in contact to test control strate-
gies

• Conduct experiments to verify the results of the modelling and simulation

• Evaluate the capabilities of standard UAV configurations

• Make suggestions for designing aerial manipulators for standard UAV configura-
tions

Fewer experiments were conducted than planned due to the global COVID-19 pandemic.
This led to limited sporadic access to physical facilities for conducting experiments. Most
notably, experiments with the 1-DOF manipulator were not carried out.
The structure of this thesis follows the process of development of this project. Analysis
of the problem space and a literature survey are done in chapter 2. In chapter 3, the
dynamic model of a UAV in free flight is developed. Here the controllers used in chapter
4 are also developed. In chapter 4, the dynamic model for free flight is extended to
consider interaction with other bodies. Finally Chapter 5 presents the conclusions of
this thesis.

CHAPTER 2
Background

The field of aerial manipulators presents many opportunities for real world applications,
surveyed by Kumar [13], and has motivated a large body of research. As multirotors
have exploded in popularity and accessibility over the last decade, research into aerial
manipulation has followed.
Research in this field covers an extensive solution space. UAV morphology is varied, and
manipulators come in a multitude of shapes, employing many different control schemes.
The research literature was recently surveyed by Ding et al [5] and Ruggiero et al [21].
The research and development falls into three overlapping areas: UAV design, manipu-
lator design, and controller design.
The variety of UAV morphologies found in the literature seek to overcome the under-
actuated nature of the coplanar multirotor. These solutions involve tilting the propellers
to provide the extra degree of actuation. Non-coplanar fixedly-tilted propeller configu-
rations use static placement of six [22, 24] or eight [17, 25] propellers for tasks such as
industrial contact inspection. Actuated tilting propellers are utilised in [1], [3], and in
[10] which has been brought to market. More radical yet, a UAV designed to perch on
contact surfaces for door-opening is explored in [26].
Manipulators vary wildly by task. Simple manipulators with one or no degrees of freedom
are explored in [8] for contact inspection and [28, 29] for surface cleaning, where an aerial
manipulator erases a white board. A 3-DOF arm is used to open drawers in [11]. An
aerial manipulator with two 3-DOF arms turns valves in [16]. A 2-DOF manipulator is
used for contact inspection in [24].
These rotorcraft use many different control schemes. Some examples: PID controllers
are used for contact inspection of pipe welds in industrial plants in [24], LQR controllers
are designed for sustained contact in [28], and non-linear controllers are built in [9] for
structure inspection by contact from the underside.
The explosion in popularity of multirotors amongst hobbyists and consumers has been
driven by access to affordable and robust multirotor and flight controller solutions. Chief
amongst the flight controller solutions is the PX4 flight controller architecture [18] and
the Pixhawk implementation [2]. Its integration with the Robot Operating System
(ROS), a popular software framework for robotics [19], has led to widespread adoption
by the hobby flight community and industry. Its communication protocol, MAVLINK
[12], facilitates communication with the PX4 flight controller.

4 2 Background

An under-explored topic in the field of aerial manipulation is the capabilities of consumer
grade UAVs with simple manipulators utilising off-the-shelf flight controllers. This thesis
seeks to answer exactly that.

CHAPTER 3
Free Flight

This chapter develops a dynamic model, a simulation model and a physical model of a
UAV in free flight, laying the groundwork for an exploration of contact in chapter 4.
In this chapter a dynamic model describing the behaviour of the UAV in flight will be
developed from first principles using the Newton-Euler equations. A simulation model
will be developed to approximate the behaviour of the UAV in flight to increase the
iteration speed and explore the limits of the UAV without risking damage in flight tests.
The simulation model is extended with with a cascaded position controller, consisting
of three PID controllers, an attitude controller, an altitude controller and a position
controller. The altitude and position controllers are also implemented on the physical
UAV, which already has an attitude controller built into its flight controller.

Figure 3.1: The physical UAV in flight.

The construction of the physical UAV is described along with the experimental setup
used in flight tests, including a motion capture system and a ground station. The
parameters of the physical UAV are introduced here. The steps taken to align the
behaviour of the simulated attitude controller with its physical counterpart is described
in detail.
Finally, simulations and flight tests are conducted using the same inputs and the results
are compared.

6 3 Free Flight

3.1 Dynamic Model
The dynamic model developed in this section describes how the UAV’s state evolves
over time and how actuation of its motors affect this evolution. The model is developed
from the structure of the UAV from first principles using the Newton-Euler equations.
Additionally, a motor mixer matrix is derived to provide the first step towards controlling
the UAV. The derivation in this section follows the approach and notation of [14].

3.1.1 Rigid Body Dynamics

Figure 3.2: Diagram of the Hexarotor X configuration as seen from above. The red
arrow points along the x-axis of the body fixed frame, in the direction that the UAV is
facing. The z-axis of the body fixed frame points towards the reader.

The UAV is a Hexarotor in the ‘X’ configuration, consisting of six coplanar rotors ar-
ranged in counter rotating pairs. The ‘X’ denotes the placement of the rotors around
the UAV, as shown in figure 3.2.
The absolute position of the UAV in the inertial frame is given by ξIB, where I denotes
the inertial frame and B denotes the body-fixed frame. In general, the superscript will
be used to denote the frame of reference and the subscript will be used to identify the
frame of interest. When the frames of reference and interest coincide, the subscript is
omitted, e.g., fB means the force generated within the body frame as seen from the body
frame.

3.1 Dynamic Model 7

The body-fixed frame B is a coordinate system with its origin located at the center of
mass of the UAV. Its x-, y-, and z-axes are fixed to the UAV’s body and point forward,
left, and up, as seen in figure 3.2.

Each rotor, numbered according to figure 3.2, is centered at a point, ri =
[
xi yi zi

]T
with respect to the hexarotor’s center of mass. The ith rotor generates a force fi along
its axis of rotation and a torque τ i, given by

fi = k

 0
0
ω2
i

 (3.1)

τ i = ri × fi + b

 0
0
ω2
i

+ IM

 0
0
ω̇i

 = S(ri)fi + b

 0
0
ω2
i

+ IM

 0
0
ω̇i

 (3.2)

where ωi is the angular velocity of the rotor, k is the lift constant, b is the drag constant,
IM is the moment of inertia of the rotor, and S(·) maps a vector to its skew symmetric
matrix,

S(ri) =

 0 −zi yi
zi 0 −xi

−yi xi 0

 (3.3)

The derivative motor term IM ω̇i is small because IM is minuscule and is therefore omitted
for the rest of the derivation of the system dynamics.
The total wrench (force and torque) generated by the UAV in the body frame is the sum
of the forces and torques generated by each rotor

wB =
[

fB
τB

]
=

6∑
i=1

[
fi
τ i

]
(3.4)

It is evident from equation 3.1 that the total force generated by the rotors has only one
non-zero force component in the z direction. The force generated by the rotors is called
the thrust and the z component is labelled T . The total wrench then has 4 non-zero
terms, force in the z direction and torque around the x, y, and z axes. These are labelled
τφ, τθ, and τψ, respectively. Throughout this thesis, the zero terms of the wrench will
be omitted. Thus, the total wrench generated by the UAV has 4 dimensions and is of
the form

wB =

T
τφ
τθ
τψ

 (3.5)

From these equations we can now derive the linear dynamics in the inertial frame. The
linear dynamics are driven by the sum of the forces acting upon the UAV including the
force of thrust fB, the force of gravity fg, and air resistance. Air resistance is omitted

8 3 Free Flight

in the dynamic model, because the goal of this thesis is to apply wrench to objects in
static contact scenarios, where the UAV velocity is low. Air resistance generates a force
resisting motion when an object moves through a fluid and scales with the velocity of
the object and so becomes a relatively small force at low speeds. The acceleration of the
UAV in the inertial frame is then

mξ̈
I

B =

 0
0

−mg

+RI
BfB (3.6)

where m is the mass of the UAV, ξ̈
I

B is the acceleration of the UAV in the inertial frame,
g is the acceleration due to gravity, and RI

B is the rotation matrix. The rotation matrix
used for these calculations uses yaw-pitch-roll convention.

RI
B = Rz(ψ)Ry(θ)Rx(φ) (3.7)

where Rz(ψ) represents a rotation around the z-axis, followed by Ry(θ) around the new
y-axis, and then Rx(φ) around the final x-axis. The inverse of this operation, that is,
the rotation from the inertial frame to the body frame, is given by

RB
I = (RI

B)−1 = (RI
B)T (3.8)

by the general properties of rotation matrices.
To derive the rotational dynamics of the body in the inertial frame, it must first be
derived in the body frame. The orientation of ξIB is parameterized by η = [φ, θ, ψ]T .
The instantaneous angular velocity in the body fixed frame is denoted ν = [p, q, r]T .
The relationship between the torque and angular velocity and acceleration is given by

Iν̇ + ν × (Iν) = τB (3.9)

where I is the moment of inertia of the UAV,

I =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 (3.10)

Rearranging equation 3.9 to solve for the angular acceleration,

ν̇ = I−1
(
τB − ν × (Iν)

)
= I−1

 τφ + (Iyy − Izz) q r
τθ + (Izz − Ixx) p r
τψ + (Ixx − Iyy) p q

 =

τφ+(Iyy−Izz)q r

Ixx
τθ+(Izz−Ixx)p r

Iyy
τψ+(Ixx−Iyy)p q

Izz

 (3.11)

Equation 3.11 gives the angular acceleration in the body fixed frame. It is convenient,
however, to find the angular acceleration in the inertial frame, denoted η̈, as η is used
to describe the orientation.

3.2 Simulation of the Dynamic Model 9

The transformation from the angular velocity of the UAV with respect to the world
frame, η̇, into the body-fixed frame, ν can be expressed as a matrix Wη. See equation
5.46 in [15]. Wη and its inverse are

Wη =

 1 0 −Sθ
0 Cφ CθSφ
0 −Sφ CθCφ

 (3.12)

W−1
η =

 1 TθSφ TθCφ
0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ

 (3.13)

where cos(α), sin(α), tan(α) are written Cα, Sα, Tα, a notation which will be used
throughout the rest of this thesis.
Using equation 3.13, the angular velocity in the inertial frame η̇ can be stated in terms
of ν

η̇ = W−1
η ν (3.14)

Taking the time derivative of both sides reveals

η̈ = d

dt
(W−1

η)ν + W−1
η ν̇ (3.15)

where
d

dt
(W−1

η) =

0 φ̇CφTθ + θ̇Sθ/C
2
θ −φ̇SφTθ + θ̇Cφ/C

2
θ

0 −φ̇Sφ −φ̇Cφ
0 φ̇Cφ/Cθ + θ̇SφTθ/Cθ −φ̇Sφ/Cθ + θ̇CφTθ/Cθ

 (3.16)

Now given equations 3.4, 3.6, 3.11, 3.14, and 3.15 the motion of the UAV in the inertial
frame is fully described.

3.2 Simulation of the Dynamic Model
This section desribes a simulation model of the UAV. It forms a foundation that will be
extended with controllers in section 3.3 and manipulators in chapter 4. The purpose of
the simulation model is to approximate the behaviour of the UAV in flight scenarios so
as to increase the iteration speed and to explore the limits of the UAV without risking
damage in flight tests. The simulation model implementation is largely independent
of the dynamic model and therefore, will also be used to verify the predictions of the
dynamic models in chapter 4.
The simulation model was created in MATLAB and Simulink. Simulink is a block
diagramming tool for modelling and simulating dynamic systems [6]. The Simscape
Multibody Toolbox was used to provide a simulation environment for 3D mechanical
systems [23].

10 3 Free Flight

Using the Simscape Multibody Toolbox to develop the simulation confers some advan-
tages over building the simulation in Simulink based on the dynamic model derived in
section 3.1. The blocks in the Simscape Multibody Toolbox provide tools to quickly
build a model of a body under the influence of the forces and torques acting upon it.

Figure 3.3: The block diagram of the simulated UAV. The UAV is modelled using
blocks from the Simscape Multibody Toolbox.

The block diagram of the UAV body is shown in figure 3.3. The simulation is separated
into three different frames: the inertial world frame, the body fixed and world aligned
local frame, and the body fixed and aligned body frame. The local and body frames are
constrained by a translational cartesian joint and a rotational spherical joint, respectively.
The block labelled ‘Motor Speed to Body Wrench’, shown in figure 3.4, takes six motor
speeds as input and converts them to forces and torques as described by equation 3.4.
Aside from the ‘Motor Speed to Body Wrench’ block, the rest of the simulation model
dynamics are modelled using Simscape Multibody Toolbox. By using a commercial
toolbox, the simulation model provides an independent implementation of the dynamic
model.

Figure 3.4: The block diagram of ‘Motor Speed to Body Wrench’. Note the 1st order
transfer functions. They model the dynamics of the brushless DC motors used to drive
the propellers, using the BLDC response times found in [27]. The saturation block
provides the physical limits on the motor speeds. The forces and torques are applied at
points at a distance Lr from the center of mass of the UAV.

Table 3.1 lists the parameters used for the simulation.

3.2 Simulation of the Dynamic Model 11

Mass m 2.2 kg
Inertia about x Ixx 0.0265
Inertia about y Iyy 0.0265
Inertia about z Izz 0.0529
Rotor length Lr 0.31 m
Lift constant k 5.1597 · 10−6

Drag constant b 2.5798 · 10−7

Table 3.1: Parameters of the simulated UAV.

To simulate the UAV, a vector of six motor speeds is provided as input. The outputs
of the simulation are the linear and rotational states of the simulated UAV: position,
velocity, acceleration, orientation, angular velocity and angular acceleration. Figure 3.5
shows the motor speed input for each of the rotors for one such simulation. The resulting
motion of the simulated UAV is shown in figures 3.6 and 3.7. The parameters used for
the simulation are shown in table 3.1.

Figure 3.5: Motor speed input to simulated UAV.

The rotational dynamics of the UAV are shown in figure 3.6. The rotational accelerations
clearly respond to imbalances in the motor speeds. The simulation outputs the rotational
dynamics in the body frame. These outputs are converted to the inertial roll, pitch, and
yaw parameterization using equation 3.14.

12 3 Free Flight

Figure 3.6: Rotational dynamics of the simulated UAV. From top to bottom, rota-
tional acceleration in the body frame, rotational velocity in the inertial frame, and the
orientation of the UAV in the inertial frame

The resulting linear dynamics of the simulated UAV are shown in figure 3.7. The acceler-
ation clearly responds to the changes in the pitch and roll angles. As these angles remain
steady, the UAV continues to accelerate in both x and y throughout the simulation.

3.3 Controllers 13

Figure 3.7: Linear dynamics of the simulated UAV. From top to bottom, acceleration,
velocity, and position of the simulated UAV in the inertial frame.

3.3 Controllers
The purpose of this section is to develop a position controller for both the physical
and the simulated UAV. The position controller is split into two parts. The x and y
components of the position controller are considered together and will be referred to as
the position controller throughout this thesis. The z component of the position controller
is referred to as the altitude controller and considered separately.
The position controller takes a desired x and y position as input and outputs attitude

14 3 Free Flight

targets that are fed to the attitude controller. The altitude controller on the other hand,
takes a z position as input and outputs the required thrust force, Tref. While the physical
UAV has a built-in attitude controller, one also has to be defined for and added to the
simulated UAV described in section 3.2. The attitude controller receives attitude targets
from the position controller and outputs the torques τ ref required to achieve them. With
this attitude controller description, it is necessary to create a module that can translate
the desired torque to required motor speeds ω. This module is called the motor mixer.
Figure 3.8 shows the control architecture for the UAV in the simulation.

Figure 3.8: Block diagram of position controller architecture. The blue signals rep-
resent the inputs to the system. In the simulation, all of the states of the simulated
UAV are directly available to the controllers. Details on the physical UAVs system
architecture can be found in section 3.4.2.

In this section, the controllers are developed from the inside out. First, the motor mixer
module is defined. Then, a PID attitude controller is developed for the simulation to
approximate the behaviour of the onboard controller. Next, the position controller is
designed in two parts, the altitude controller (the z component) and the x, y-position
controller.
The controllers are implemented and tested in the simulation as they are developed.

3.3.1 Motor Mixer
The motor mixer, M takes the desired wrench as an input and outputs the motor speeds
required to achieve the wrench. A hexarotor cannot, however, achieve an arbitrary
wrench due to its coplanar rotor configuration. While a hexarotor platform can achieve
a torque in all three dimensions, it can only produce a positive force along the z-axis
of the body, perpendicular to the rotor plane. This leaves the UAV with 4 degrees of
freedom.

3.3 Controllers 15

An examination of equation 3.4 reveals that the wrench wB is a linear combination of the
squared motor speeds. Letting Ω be the squared motor speeds and win be the desired
wrench in 4 degrees of freedom,

Ω =

ω2

1
ω2

2
· · ·
ω2

6

 , win =

T
τφ
τθ
τψ

the motor mixer then is the matrix M such that

Ω = Mtin (3.17)

To find M, consider the Jacobian of wB from equation 3.4 with respect to Ω, denoted
J(wB,Ω), which gives the relationship between Ω and the real generated torque tout

wout = J(wB,Ω)Ω (3.18)

Plugging equation 3.17, into equation 3.18,

wout = J(wB,Ω)Mtin (3.19)

To make wout = win, the motor mixer matrix M is then simply the pseudoinverse of
J(wB,Ω),

M = J(wB,Ω)+ (3.20)
which has the property, J(wB,Ω)J(wB,Ω)+ = [1], where [1] is the identity matrix.
For a hexarotor with a center of mass coincident with the body frame and rotors at a
distance Lr from the center, the Jacobian and motor mixer are given by

J(wB,Ω) =

k k k k k k

−σ
2 −σ −σ

2
σ
2 σ σ

2

−
√

3σ
2 0

√
3σ
2

√
3σ
2 0

√
3σ
2

b −b b −b b −b

 (3.21)

and

M =

1
6k − 1

6σ −
√

3
6σ

1
6b

1
6k − 1

3σ 0 − 1
6b

1
6k − 1

6σ

√
3

6σ
1
6b

1
6k

1
6σ

√
3

6σ − 1
6b

1
6k

1
3σ 0 1

6b
1

6k
1

6σ −
√

3
6σ − 1

6b

(3.22)

where σ = kLr.
Adding the motor mixer to the simulation is done by simply adding a gain block with
the mixer matrix M from equation 3.22, shown in figure 3.9.

16 3 Free Flight

Figure 3.9: Block diagram of motor mixer.

The motor mixer was tested in simulation by feeding in wrench inputs and comparing
them to the wrench and torque applied to the body of the UAV. Figure 3.10 shows the
results of a simulation with the motor mixer.

Figure 3.10: Motor mixer in simulation. A sinusoidal input was provided to each of
the elements of wB, dashed black line, and the wrench on the body was measured, in
orange. The slight delay in the output is due to the dynamics of the BLDC motors
shown in figure 3.4.

3.3 Controllers 17

3.3.2 PID Attitude Controller
The attitude controller takes roll, pitch, and yaw references as input and outputs the
required wrench into the motor mixer designed above.
The attitude controller on board the Pixhawk 4 flight controller is a cascaded controller
with an inner and an outer loop. The inner loop is a PID angular rate controller which
takes angular velocity references as input from the outer loop, a non-linear, quaternion-
based attitude controller detailed in [4].
For the purposes of the simulation, a PID control architecture was used. PID control was
chosen for quick setup and ease of manual tuning, and the structure of a PID controller
lends itself to the analysis of contact in chapter 4.
A PID controller is based on three error calculations, a proportional error ep,η, a deriva-
tive error ed,η, and an integral error ei,η,

ep,η = ηref − η (3.23)

ed,η = −η̇ (3.24)

ei,η =
∫ t

0
ep,η (3.25)

The derivative error ed,η is set to the negative of the angular velocity, rather than the
derivative of ep,η, to smooth the response to a change in reference. A stepwise change
to the reference results in a discontinuity in ep,η, and thereby a generates a spike in ed,η.
These errors are scaled by their corresponding gains, Kp,η, Kd,η, and Ki,η, which take
the form

Kp,η =

kp,φ 0 0
0 kp,θ 0
0 0 kp,ψ

 (3.26)

These errors and gains combine to create a controller of the form

uη = Kp,ηep,η + Ki,ηei,η + Kd,ηed,η (3.27)

The output of the controller, uη is then scaled by the inertia of the UAV to provide the
torque targets, which are sent to the motor mixer from section 3.3.1.

τ ref = I−1uη (3.28)

Figure 3.11 shows the implementation of the controller in simulation. Tuning of this
controller is discussed in section 3.4.3, the results of which are shown in figures 3.25 and
3.26.

18 3 Free Flight

Figure 3.11: The block diagram implementation of the attitude controller in Simulink.

The attitude controller was tested in simulation by feeding attitude references inputs and
comparing them to the attitude of the simulated UAV. Figure 3.12 shows the results of
a simulation with the attitude controller.

Figure 3.12: Attitude controller in simulation. A step input was provided to each of
the elements of the attitude η, dashed black line, and the attitude of the simulated UAV
was recorded, in orange. The controller gains used can be found in table 3.2.

3.3 Controllers 19

kp kd ki
φ 0.17 0.017 0
θ 0.17 0.017 0
ψ 0.17 0.034 0

Table 3.2: PID attitude controller gains used in the simulation shown in figure 3.12.

3.3.3 Altitude Controller
The process for the altitude controller is nearly identical. The only differences are that
the altitude requires control around a non-zero operating point (gravity) and dynamic
scaling to handle rotation of the thrust vector. Handling this operating point is simply
a matter of adding an extra term to the controller output to counteract gravity, like so

uz = kp,zep,z + kd,zed,z + ki,zei,z + g (3.29)

When the UAV has an attitude of 0, this controller functions as expected. When the
UAV begins to tilt, however, the thrust vector no longer projects vertically and so the
thrust needs to be increased to maintain flight. The thrust in the body frame (from
equation 3.4) has only a z component, T . The thrust vector in the inertial frame is then

f I = RI
BfB = RI

B

0
0
T

 = T

SφSψ + CφCψSθ
CφSψSθ − CψSφ

CφCθ

 (3.30)

Maintaining a thrust of T in the z direction then requires scaling the input thrust by
CφCθ. This scaling can be done by simply dividing uz by the cosines of roll and pitch
and multiplying by the mass m of the UAV. The thrust reference Tref to be sent to the
motor mixer becomes

Tref = muz
CφCθ

(3.31)

Figure 3.13 shows the implementation of the controller in simulation.

20 3 Free Flight

Figure 3.13: The block diagram implementation of the altitude controller in Simulink.

The altitude controller was tested in simulation by feeding z position reference inputs
to the altitude controller and comparing them to the z position of the simulated UAV.
Figure 3.14 shows the results of a simulation with the altitude controller.

Figure 3.14: Altitude controller in simulation. A step input was provided as the
z position reference, dashed black line, and the z position of the simulated UAV was
recorded, in orange. The controller gains used can be found in table 3.3.

kp kd ki
z 1 1.4 0

Table 3.3: PID altitude controller gains used in the simulation shown in figure 3.14.

3.3 Controllers 21

3.3.4 PID Position Controller
The position controller is the outermost control loop required for autonomous flight.
It consists of a PID controller which takes an input position in world coordinates and
outputs the required attitude reference to move the UAV to the desired position. The
position controller is designed in much the same way as the attitude controller in section
3.3.2.
To design the x- and y-controllers, we start by assuming that the UAV is hovering at
some arbitrary point in the world coordinates with its axes parallel to the corresponding
world axes. In other words, we assume that η = 0. If the UAV begins to roll such that
φ > 0 while θ and ψ are held at 0, the UAV will begin to accelerate along the y-axis
in the negative direction. Likewise, if the UAV begins to pitch such that θ > 0 while φ
and ψ are held at 0, the UAV will begin to accelerate along the x-axis in the positive
direction. The implication of these results is that x- and y-controllers can be decoupled
from each other and considered separately. The x-controller will then look at the error
in the x-direction and output a roll target, while the y-controller will look at the error
in the y-direction and output a pitch target.
Starting with the x-controller, using the standard error formulation,

ep,x = xref − x (3.32)

ed,x = −ẋ (3.33)

ei,x =
∫ t

0
ep,x (3.34)

ux = kp,xep,x + ki,xei,x + kd,xed,x (3.35)
where θref = ux is the pitch component of the attitude target ηref .
Likewise for the y-controller,

ep,y = yref − y (3.36)

ed,y = −ẏ (3.37)

ei,y =
∫ t

0
ep,y (3.38)

uy = kp,yep,y + ki,yei,y + kd,yed,y (3.39)
where φref = −uy is the roll component.
The x- and y-controllers designed above function as intended when ψ = 0. If ψ ̸= 0,
then the x component of the error no longer maps directly to the required pitch. The
same goes for the y component and roll. The solution to this problem is to rotate the

22 3 Free Flight

error vector around the z axis by ψ. In other words, taking the error with respect to
the direction that the UAV is facing. The new error vectors, denoted e′, are then[

e′
p,x

e′
p,y

]
= R(ψ)

[
ep,x
ep,y

]
(3.40)

[
e′
d,x

e′
d,y

]
= R(ψ)

[
ed,x
ed,y

]
(3.41)

[
e′
i,x

e′
i,y

]
=
∫ t

0

[
e′
p,x

e′
p,y

]
(3.42)

where R(ψ) =
[
Cψ −Sψ
Sψ Cψ

]
.

With these new error vectors the x- and y-position controllers become

ux = kp,xe
′
p,x + ki,xe

′
i,x + kd,xe

′
d,x (3.43)

uy = kp,ye
′
p,y + ki,ye

′
i,y + kd,ye

′
d,y (3.44)

Figure 3.15 shows the implementation of the controller in simulation.

Figure 3.15: The block diagram implementation of the position controller in Simulink.

The position controller was tested in simulation by feeding x and y position reference
inputs to the position controller and comparing them to the x and y positions of the
simulated UAV. Figure 3.16 shows the results of a simulation with the position controller.

3.4 Test Setup 23

Figure 3.16: Altitude controller in simulation. A step input was provided to each of
the inputs of the position controller, dashed black line, and the position of the simulated
UAV was recorded, in orange. The controller gains used can be found in table 3.4.

kp kd ki
x 10 8 0
y 10 8 0

Table 3.4: PID position controller gains used in the simulation shown in figure 3.16.

3.4 Test Setup
This section describes the experimental setup used for flight tests. First the construc-
tion of the physical UAV is described. Then the architecture of the whole test setup,
comprised of a motion capture system, a control computer, and the UAV, is described.
Finally, the process for attitude controller alignment is described.

3.4.1 Physical UAV
The physical UAV was a multirotor in the coplanar hexarotor configuration as described
in section 3.1. The body of the UAV contained the battery, power management board,
the flight controller, and the flight computer. Six rotor arms were attached, each
mounted with an electronic speed controller (ESC) and brushless DC (BLDC) motor, as
shown in figure 3.17. All of the components used in the construction of the UAV were
consumer grade and were purchased from a leading hobby shop, HobbyKing.

24 3 Free Flight

Figure 3.17: The physical UAV.

The total weight of the UAV was 2.2kg. A 4-cell LiPo battery contributed a quarter
of the weight and powered all of the components onboard UAV, providing a nominal
voltage of 14.8V. The flight controller was a Pixhawk 4 and the flight computer was a
Raspberry Pi 3b+. The rotor arms were hollow carbon fiber tubes with mounts for the
motors.
The BLDC motors were rated at 950kV. When driven by the 4-cell battery, they could
achieve a maximum rotation speed of approximately 15,000 RPM. Through testing, the
maximum thrust was found to be approximately 80N, or 3.71mg. These values were
used to estimate k = 5.1597 · 10−6 and b = 2.5798 · 10−7.

3.4.2 System Description

This section provides a system level description of the physical UAV, both the onboard
systems and the offboard systems. The UAV received instructions from an offboard con-
trol computer and received measurements from an offboard motion capture (MOCAP)
system. The system architecture is shown in figure 3.18.

3.4 Test Setup 25

Figure 3.18: System Architecture

A six-camera OptiTrack motion capture system was set up to provide real-time high-
resolution pose measurements (position and orientation) to the system, broadcast over
WiFi using the Natnet protocol. Six motion capture cameras were connected to a Win-
dows computer running OptiTrack’s Motive software. The UAV’s pose was tracked using
a set of 4 infrared markers mounted on the rotor arms.
The control computer fulfilled the role of a ground station for the UAV. It provided a

26 3 Free Flight

command line interface (CLI) for the user to control and monitor the state of the UAV.
The control computer interfaced with the UAV over WiFi using ROS.
On board the UAV, the flight computer received instructions from the control computer,
interfaced with the flight controller, and returned status updates to the control computer.

3.4.2.1 Control Computer
The control computer functioned as the ground station for the UAV. Figure 3.19 shows
the internals. A Linux laptop running Ubuntu 18.04 served as the control computer
and hosted several ROS nodes, including the ROS master. These nodes each served a
different purpose.

Figure 3.19: System Architecture

A mocap_optitrack node was used to broadcast the MOCAP pose data onto the ROS
network, making it accessible to the UAV and to the user through the CLI.
A CLI node was written to provide the user with the tools to configure, control, and
monitor the UAV during flight. Through the CLI, the user was able to set the gains of
the position controller (discussed further in section 3.3.4). In flight the user was able to
send position and yaw references for the UAV to follow. Finally, the CLI provided the

3.4 Test Setup 27

user with real-time status information, including the battery level, position, orientation,
and controller state information. The CLI was written in Python using the rospy library.
Figure 3.20 shows the CLI. The source code can be found in appendix A.
Finally, the rosbag package was used to record flight data for later analysis.

Figure 3.20: An instance of the CLI. In this instance, neither the UAV nor the MOCAP
system are connected, so most of the values are zero.

3.4.2.2 UAV
The UAV was built out of several subsystems as shown in figure 3.21.
A Raspberry Pi 3b+ played the role of the flight computer, providing an interface to
the offboard systems over WiFi. A position controller node on the flight computer was

28 3 Free Flight

written to receive the controller configurations, position and yaw references, and the
pose measurements from the ROS network. The position controller node implemented
a PID position controller, as described in sections 3.3.3 and 3.3.4. The outputs of
the position controller were sent to the flight controller over a USB connection using
the MAVlink protocol. The position controller node received battery status updates
from the flight controller over MAVlink and forwarded them to the ROS network. The
position controller node was written in C++ using the roscpp and MAVSDK libraries
to provide the ROS and MAVlink interfaces, respectively. The source code can be found
in appendix A.
A Pixhawk 4 was used as the flight controller. The primary function of the flight
controller was to act as an attitude controller and interface with the motors through
the ESCs. The flight controller received attitude and thrust references from the flight
computer over MAVlink and provided the ESCs with speed references, encoded in PWM.
These ESCs then drove the motors.

3.4 Test Setup 29

Figure 3.21: System Architecture

30 3 Free Flight

Thrust Scaling

During early flight tests, the inputs required to keep the UAV airborne were found to
increase over the course of a flight. This was traced to the battery. The UAV is powered
by a 4 cell, Li-Po battery, with a nominal voltage of 14.8V. The real voltage, however,
ranges from 16.8V at full charge to 12V at full discharge. For each motor, the motor
speed ωi is roughly proportional to the motor voltage Vb,

ωi ∝ Vb

and so, recalling equations 3.1 and 3.4, the produced force fB is roughly proportional to
its square,

T ∝ V 2
b

The motors on the UAV are fed directly from the battery and so the motor speeds are
directly coupled to the state of the battery. This means that to provide a constant set of
motor speeds or a constant thrust, the input to the motors must increase as the battery
voltage decreases.
The thrust input Tin to the onboard flight controller is a value between 0 and 1. Through
testing, it was determined that this value represents the percentage of max thrust, with
1 representing 100%. To be able to reliably control the altitude, the inputs to the UAV
controller needed to be scaled to take the falling battery level into account. First, data
was taken from a flight where the UAV hovered in place until the battery was mostly
discharged. This was done to collect data over a large portion of the non-linear voltage
drop of the Li-Po battery. The input values were then compared to the real acceleration
of the UAV, as measured by the OptiTrack motion capture system, to find the input
output relationship. The acceleration of the UAV, along its z-axis, is 0 during hovering
and the only forces acting upon it are thrust and gravity, leading to

T = mg (3.45)

where m and g are both constants. Figure 3.22, shows the attempts at scaling, the result
of which is

Tin = T

fscaleV 2
b

(3.46)

where fscale = 0.3368.

3.4 Test Setup 31

Figure 3.22: Battery test flight results. The upper two plots show the thrust input
and battery voltage over time. The bottom plot shows the results of scaling. Note that
there was a small increase in the z reference at t = 200s.

3.4.3 Attitude Controller Alignment

The purpose of the simulation model is to approximate the behaviour of the physical UAV
in flight, so as to increase iteration speed and prevent damage during flight tests. The
primary difference between the simulated and physical UAVs is the attitude controller,
as discussed in section 3.3.2. For the simulation to be useful, it is necessary to align
the response of the simulated attitude controller with one present on the physical UAV.
To acquire the required attitude data, infrared tracking dots were attached to the UAV,
which was then flown in view of an OptiTrack motion capture system. The UAV was
then to be fed step inputs on roll, pitch, yaw and height. This setup, however, posed a
problem. The small indoor space used for the motion capture prevented the UAV from
taking large step inputs. The solution was to build a test rig, which was then attached
to a pole. This test rig, shown in figures 3.23 and 3.24, constrains the motion of the
UAV to rotation about its y-axis. The test rig was designed in Onshape and printed on
a Creality Ender 3 3D printer.

32 3 Free Flight

Figure 3.23: A 3D render of the test rig. The arms of the UAV pass through the hole
on either side, limiting the UAV to only one degree of freedom, pitching.

3.4.3.1 Pitch and Roll Controllers

In the process of designing the test rig, some assumptions needed to be made. The
center of mass was assumed to be located at the center of the UAV body, lying on a
plane passing through the center of the rotor arms. Additionally it is assumed that
the UAV’s pitch and roll dynamics are approximately the same, that is, that they both
exhibit the same response to a step input. Designing a 1-DOF test rig for pitch is
mechanically simpler, due to a rotor arm pair (r2 and r5) aligned along the UAV’s y-
axis. The results from this rig can then be generalized from pitch to roll, using the
assumptions outlined above.

3.4 Test Setup 33

Figure 3.24: The physical UAV mounted on the test rig.

The response to the step input is shown in figure 3.25. With this data to test against,
the roll and pitch gains of the attitude controller were hand-tuned to achieve the desired
response, also shown in figure 3.25.

Figure 3.25: Closed Loop response of the pitch attitude controller. The reference pitch
θin is shown by the dashed black line. The measured response from the physical UAV
in the test rig θrig is shown as the blue line. The orange line shows the output of the
attitude PID θin detailed in section 3.3.2. The gains used are shown in table 3.5.

34 3 Free Flight

kp kd ki
φ 0.17 0.0119 0.0017
θ 0.17 0.0119 0.0017
ψ 0.051 0.0119 0

Table 3.5: Attitude PID controller gains.

3.4.3.2 Yaw Controller
The final step in aligning the attitude controller in simulation with the physical UAV is
to tune the yaw component of the PID controller. While the pitch and roll controllers
could be tuned together due to the symmetry of the UAV’s contruction, the yaw system
has different dynamics. This is due to the means by which yaw torque is produced. The
yaw torque is produced as a reaction torque, countering the torque required to spin the
propeller. This is a less efficient method of producing torque than that of the roll and
pitch torques, which are generated by applying forces at a distance from the center of
mass, so larger motor speeds changes are required to achieve the same torque.
To collect the data for tuning the attitude PIDs, the UAV was flown in a hover at an
altitude of 1.5 meters and given a step input to the yaw controller. With the data
collected, the PID was tuned in the same way as for the pitch and roll controllers. The
results of the data collection and tuning are shown in figure 3.26. The gains used are
shown in table 3.5.

Figure 3.26: Closed loop step response of the yaw controller. The reference yaw ψin is
shown by the black dashed line. The measured response from the physical UAV in flight
ψflight is shown as the blue line. The orange line shows the output ψsim of the attitude
PID in simulation.

3.5 Verification 35

With the yaw controller tuned, all of the components of the simulated attitude controller
are tuned to the response of the physical UAV.

3.5 Verification

To verify that the tuned attitude controller in simulation properly emulates the embed-
ded controllers on the physical UAV, a test flight was conducted both in the simulation
and in experiment. Both flights used the same input signals and position controllers
with the same gains, shown in table 3.6. The results of the test flight are shown in figure
3.27.

kp kd ki
x 8 10 1
y 8 10 1
z 0.05 0.1 0.02

Table 3.6: Position PID controller gains for equations 3.29, 3.43, and 3.44.

The plots show that the simulation matches the experiment well enough to predict the
behaviour of the UAV to a reasonable degree of precision, thus validating the simulation
model. The small differences between the UAV in simulation and the physical UAV in
experiment reveal that the latter responds slower. The rise time is slightly slower and the
settling time is also slower. The differences are likely due to several factors. One is the
differences between the PID attitude controller used in simulation and the actual PX4
onboard attitude controller. Furthermore, there are forces acting on the physical UAV
which were not modelled in the simulation, including air resistance and wind. Finally,
there is measurement noise in the experiment data.

36 3 Free Flight

Figure 3.27: Results of a test flight with position controllers in simulation and in
experiment. The plots show the position of the UAV along each of the axes of the
inertial frame, from top to bottom, x, y, and z. The blue line is the data from the
physical UAV and the orange line is the data from the simulation.

3.6 Summary 37

3.6 Summary
In this chapter, a mathematical model of a UAV in a coplanar hexarotor configuration
was developed from the Newton-Euler formulation of the laws of motion. The model
was then used to derive the motor mixer to control the rotor speeds to produce a desired
wrench. An equivalent simulation model was developed in MATLAB and Simulink, with
the Simscape Multibody Toolbox.
A cascaded control scheme was developed for position control. It consisted of a PID
position controller as the outer loop and an attitude controller as the inner loop. The
physical UAV used the attitude controller built into the onboard flight controller. The
simulation model implemented a PID attitude controller, which was tuned to match that
of the physical UAV.
The physical UAV was constructed and the experimental setup, with the MOCAP system
and the ground station, was described. A command line interface was developed to
control the UAV over a ROS network. Using ROS to receive measurements from the
MOCAP system and targets from the CLI, and MAVSDK to send commands to the
Pixhawk 4, the PID position controller was implemented on the UAV flight computer
which was then used to validate the simulation model.
The challenge posed by the motor voltage dropping as the battery discharged was over-
come by performing and analysing flight tests and developing a method to compensate.
This compensation was then implemented on the flight computer.
The response of the simulated attitude controller was aligned with the one already
present on the physical UAV. This was accomplished in several steps. A test rig was
designed, printed, and assembled to overcome the challenge of measuring large attitude
step responses in a small indoor space. The simulated attitude controller gains were
tuned to match the behavior of the physical UAV.
The results from flight tests and simulations conducted using the same inputs were in
correspondence and thus verified the simulation model.
The dynamic model, simulation model, controllers, and test setup developed in this
chapter provide a platform which will be used in the next chapter to model and test
contact interactions.

38

CHAPTER 4
Contact

With the model for the UAV in free flight developed in the previous chapter, it is now
time to look at how the UAV interacts with the environment. The real world applications
motivating this thesis are surface contact tasks, including contact inspection, drilling,
and polishing. These tasks all involve interactions with walls or wall-like surfaces. The
scope of the interaction in this chapter is limited to static contact, that is, applying
wrench to a stationary point on a surface.
In this chapter the dynamic model developed in Chapter 3 will be extended to add a
manipulator arm. The primary focus will be a manipulator arm rigidly attached to the
center of mass of the UAV. Contact forces are introduced to the dynamic model from
which a stable operating region of pitch and thrust for static contact is identified and
maximum applicable interaction force is established.
The controllers from chapter 3 will be introduced to the discussion. The contact force will
be traced back through the controllers to the inputs to the position controller, resulting
in the description of a force controller. The constraints of the cascaded PID control
scheme will be evaluated to identify a realisable subregion of the operating region and
establish the maximum realisable interaction force. This analysis will be corroborated
in simulation.
The simulation model from chapter 3 will be extended with the manipulator and a model
for contact and used to simulate a contact scenario. The force controller will also be
implemented and tested in simulation. Experiments will be done with a physical UAV
and collected data will be compared against simulation data.
A second manipulator configuration consisting of a manipulator arm attached to an
actuated joint with one degree of freedom (1-DOF) will also be modelled and simulated.
Throughout this chapter several parameters affecting contact are identified. Together
these constitute a set of UAV design parameters which can be optimized for contact
application. Physical design parameters include choice of manipulator configuration,
UAV mass, choice of end-effector material, and manipulator length. Controller design
parameters include the gains on the attitude controller.

40 4 Contact

4.1 Dynamic Model
In this section the dynamic model is extended to consider contact with a manipulator.
Contact forces are introduced and a stable operating region of pitch angles and thrust
force is identified. Additionally, the maximum applicable interaction force is identified.
Contact between two bodies is a complex phenomenon with many non-linear and emer-
gent properties. The two primary properties to account for are friction and normal
forces, which resist motion parallel to and normal to the contact plane, respectively.
Friction forces have two modes, static friction which resists acceleration of a stationary
object and kinetic friction which resists the motion of an object. Normal forces prevent
penetration and thus exert force only in one direction, outward.
For the purposes of this chapter it is assumed that the objects with which the UAV
interacts have flat faces oriented such that the plane of contact lies parallel to the
inertial y, z−plane and the normal force fn is applied to the UAV along the x−axis. Put
simply, the interaction surface is a wall perpendicular to the x-axis. The manipulator,
in its default position, lies along the UAV’s x−axis and is affixed to the UAV’s center of
mass. The manipulator consists of a thin massless cylindrical rod of length Lm tipped
with a correspondingly small sphere, which is treated as a point.
For this chapter, it is convenient to define a local frame L with an origin located at the
center of mass of the UAV and whose axes are aligned with those of the inertial frame.
The rotation matrix from B to L is given by

RL
B = RI

B (4.1)

When the manipulator comes into contact with an object in the environment, the normal
force is applied at the point of contact, such that the manipulator does not penetrate
the object.
Friction forces occur during contact and resist motion parallel to the contact surface, in
this case along the y, z-plane. Unlike the normal force, these forces are bounded. The
upper bound on the magnitude of friction is linearly dependent on the magnitude of the
normal force,

||ff || ≤ µ|fn| (4.2)

where µ is the coefficient of friction. For the purposes of the static scenarios explored in
this thesis, only static friction will be considered, with µ = 0.7.1

Together the friction forces and normal force work to resist motion at the point of contact,
that is, they work to bring the net force to zero.
The contact force fc is the force applied to the UAV from the contact surface. This is
necessarily the opposite of the interaction force applied to the surface by the UAV. As

1According to the table in [7], the coefficient of friction for silicon or rubber (the end-effector) and
many wall like surfaces is around 0.7.

4.1 Dynamic Model 41

the normal force acts along the x-axis and the friction force acts along the perpendicular
plane, they combine in the inertial frame to create the contact force as follows

f Ic =

 fnff,y
ff,z

 (4.3)

where ff,y and ff,z are the y and z components of the friction force and

||ff || =
√

f2
f,y + f2

f,z (4.4)

The manipulator extends out from the UAV’s center of mass, along the x-axis of the
body-fixed frame, with a length Lm. The rigid attachment means that the point of
contact occurring at the end of the manipulator is constant in the body frame. The
position of the end-effector (the sphere) is given by

ξBe =

 Lm
0
0

 (4.5)

The dynamics of the end-effector in the inertial frame are, in the Newton-Euler formu-
lation, given by [20][∑ f∑

τ

]
=
[

m1 mS(ξBe)
−mS(ξBe) I −mS(ξBe)S(ξBe)

] [
ξ̈Ie
ν̇

]
+
[

−mS(ν)S(ν)ξBe
S(ν)

(
I −mS(ξBe)S(ξBe)

)
ν

]
(4.6)

When the UAV is in static equilibrium, these dynamics are greatly simplified,[∑ f∑
τ

]
= [0] (4.7)

If the UAV is in static contact with the wall, that is, in contact and in static equilibrium,
then the net force acting on the UAV is

mξ̈
I

e = f Ig + f It + f Ic = 0 (4.8)

where f Ig = [0, 0,−mg]T is the force of gravity and f It is the thrust force. The thrust
force (in the body frame) fBt , was previously referred to as fB in chapter 3 and has the
form

fBt =

0
0
T

 (4.9)

In the inertial frame f It has the form

f It = T

 SφSψ + CφCψSθ
CφSψSθ − CψSφ

CφCθ

 (4.10)

42 4 Contact

Rearranging equation 4.8,

f Ic = −T

 SφSψ + CφCψSθ
CφSψSθ − CψSφ

CφCθ

−

 0
0

−mg

 (4.11)

With the contact force calculated above, it is now possible to calculate the torques
experienced by the UAV during contact. The contact force f Ic is rotated into the body-
fixed frame of the UAV and the contact torques are found as follows

τB
c = ξe ×RB

I f Ic = S(ξe)RB
I f Ic = Lm

 0
T −mgCφCθ
mgCθSφ

 (4.12)

Here we see that the magnitude of the torques is governed by the contact forces and
dependent on the length of the manipulator.
In the specific case where the UAV is maintaining altitude in free flight, the z component
of the net force is zero, so TCφCθ = mg, that is, T = mg

CφCθ
and

f Ic = − mg

CφCθ

 SφSψ + CφCψSθ
CφSψSθ − CψSφ

0

 (4.13)

This equation makes it apparent that the forces being applied to the environment are
governed entirely by the mass of the UAV and its orientation. Regardless of the thrust
available to the UAV, the primary task of the flight controller is to keep it in the air.
In a static contact scenario this constraint limits the potential force to a small range
around hovering. The only way for the UAV to apply force is to tilt towards the object
and this action is limited by the torque from contact.
Of the interaction forces applied by the UAV, the component perpendicular to the con-
tact surface of the object is of primary interest, in this case the x−component. This
component will be referred to as the interaction force throught this chapter. Ideally, for
static force application, the end-effector is motionless on the surface. To ensure that
this is the case, the forces perpendicular to the contact surface must remain within the
bounds of equation 4.2. Combined with the definition of f Ic in equations 4.3 and 4.4 and
its derivation in equation 4.11, the following inequality emerges√

(T (CφSψSθ − CψSφ))2 + (TCφCθ −mg)2 ≤ µ|T (SφSψ + CφCψSθ)| (4.14)

For the following analysis of friction and later torque from contact, it will be assumed
that the UAV is facing the wall head on, that is, with a yaw ψ = 0. The inequality then
reduces to √

(TSφ)2 + (TCφCθ −mg)2 ≤ µ|TCφSθ| (4.15)
Furthermore, it is also assumed that the UAV’s roll φ = 0, further reducing the inequality
to

|TCθ −mg| ≤ µ|TSθ| (4.16)

4.1 Dynamic Model 43

Figure 4.1 show the region for which the inequality 4.16 holds. Outside of this region
the UAV is unable to remain static.

Figure 4.1: Friction Bound: The bound on the pitch angle and thrust force defined by
the inequality 4.16. The x-axis is the pitch angle in degrees and the y-axis is the thrust,
scaled by mg. The yellow area is the region where the inequality is true, that is, the
friction force is able to keep the end-effector in place. In the region above the yellow,
the end effector will slip up, and in the region below and to the right it slips down. The
dashed black line indicates hovering thrust as a function of pitch angle, T = mg/Cθ.

Friction is not the only constraint on the interaction force that can feasibly be applied
to an object by the UAV. To remain stable, the contact torque must also be countered.
While the UAV can only generate a force in a single direction, it is capable of generating
a torque around all three of its axes. These torques are generated by manipulating the
balance of forces generated by each rotor. In the previous chapter the motor mixer,
equation 3.22, was defined to translate a set of desired thrust and torques into motor
speeds. The motor mixer does not, however, take into account the physical limitations
of the UAV. Specifically, the operating range of the brushless DC motors. The ability
of the motors to counteract the contact torque prove to be a limitation on the static
interaction force which can be applied.
In the following, the contact torque will be traced through the motor mixer to the motor
speeds. By considering the limits of the rotors, a limit is found to the torque that can
be generated and a bound on the pitch angle and thrust force of the UAV. This analysis
is only valid within the friction bound in figure 4.1.

44 4 Contact

Taking the contact torque from equation 4.12 to create the desired wrench vector

wB
c =

[
T

−τB
c

]
=

T
0

−Lm(T −mgCφCθ)
−LmmgCθSφ

 (4.17)

and applying the assumptions from above that the roll φ = 0,

wB
c =

T
0

Lm(mgCθ − T)
0

 (4.18)

Note that the torque τB
c in equation 4.17 assumes that the static friction bound is not

exceeded.
Passing the wB

c through the motor mixer results in

Ωc = MwB
c = 1

6k

T +
√

3smr(T −mgCθ)
T

T −
√

3smr(T −mgCθ)
T −

√
3smr(T −mgCθ)

T

T +
√

3smr(T −mgCθ)

(4.19)

where Ωc is the vector of squared motor speeds and smr = Lm/Lr is the ratio of the
manipulator length to the distance of the rotors from the center of mass of the UAV.
For the motor speeds to be valid, the values in Ωc must be non-negative, because the
rotors are only capable of rotating in the direction of upward force.
The bound on θ is plotted as a function of smr, with T = mg/(CθCφ) in figure 4.2 below.
The figure shows that the maximum θ and therefore the maximum applied interaction
force that can be achieved is limited by the length of the manipulator. As the end-effector
moves further away from the center of the UAV, its power is reduced. In practice, an smr
of 1.5 or more is required for the end-effector to extend far enough past the propellers
to prevent them from contacting the wall, even for large pitch angles. For the rest of
this section smr will be fixed at 2.

4.1 Dynamic Model 45

Figure 4.2: Here the maximum pitch angle, θ, is plotted against the ratio of manipu-
lator length to rotor distance, smr = Lm/Lr, given a hover thrust of T = mg/(CφCθ).

Plugging these values of θ back into equation 4.13 reveals a maximum interaction force
application, assuming φ and ψ are 0, of

|fn| ≤ mg√√
3smr − 1

(4.20)

Figure 4.3, below, shows the maximum force that can be applied as a function of smr.

46 4 Contact

Figure 4.3: Limits on the interaction force that can be applied by the UAV in a static
state.

Looking at the relationship more between θ and T more generally, figure 4.4 plots the
bounds on θ and T from the inequality ??. Within the blue region of the plot, the
motors are capable of running at the speeds required to generate the torque to resist
the contact torque. Outside of this region the motor mixer demands that some of the
motors run at negative speeds, which is infeasible for the UAV.

4.1 Dynamic Model 47

Figure 4.4: Torque Bound: Bound on stability from contact induced torque. The x-axis
is the pitch degree in angles and the y-axis is the thrust, scaled by mg. The inequality
?? is true in the blue region, where the UAV is able to maintain stable contact. Outside
of this region it will begin to pitch uncontrollably. The dashed blue line represents the
bound with smr = 1.5 and the dashed yellow represents the bound with smr = 3.4 used
in the experiments in section 4.4. Note that this bound is only valid within the friction
bound in figure 4.1.

Figure 4.4 shows the bounds for three different values of smr. The larger the smr, the
smaller the region within the stability bound. Given a UAV with some rotor length Lr,
it is advantageous to add as short a manipulator as feasible.
Figure 4.5 visualizes the bounds on θ and T from the torque constraints with the bounds
from friction. The green region of overlap represents the region of pitch angle and thrust
force in which the UAV can operate.
The torque constraints are given by inequality ??. Within the region where the inequality
is true, the UAV is capable of counteracting the torque arising from contact and remains
stable. Outside of this region, necessary counter torque exceeds the capability of the
UAV, so the UAV will pitch uncontrollably towards the contact surface.
The friction constraints are given by inequality 4.16. Within the region where the
inequality is true, the friction in the z direction falls below the critical value of µ||fn||
and the end-effector remains motionless on the wall. Should the force exerted on the
wall by the UAV’s end-effector exceed this bound, the end-effector will begin sliding
either up or down depending on which side of the yellow region the UAV falls on.
Only in the green region of the plot can the UAV remain stable with its end-effector
fixed in place on the wall.

48 4 Contact

Figure 4.5: Operating Region: Limits on UAV pitch angle and thrust force. The x-axis
is the pitch angle in degrees and the y-axis is the thrust force, scaled by mg. The domed
blue and green area in the lower left of the plot is described by the inequality ??, where
the UAV is stable. The yellow and green banana shaped region is described by the
inequality 4.16, where the UAV’s end-effector is held in position by friction.

Figure 4.6: Contact force as a function of pitch angle and thrust force. Both the
thrust force and contact force are scaled by mg. Note that the maximum contact force
|fn| = 0.702842mg occurs towards the lower right of the operating region.

Given the operating region of the UAV, it is now possible to map the contact forces

4.2 Controller 49

that the UAV can handle. Figure 4.6 shows the magnitude of the normal force within
the operating range, with the maximum achievable interaction force in this range being
|fn| = 0.702842mg at θ = 44.8929◦, T = 0.995833mg.
In this section, the dynamic model from chapter 3 was used to develop a model for static
contact using a rigidly attached manipulator, actuated only by the motion of the UAV’s
body. The physical bounds on static contact were evaluated by considering friction
force, figure 4.1, and the achievable torque, figure 4.4. These bounds were combined to
reveal the operating region of pitch angle and thrust force of the UAV, figure 4.5, across
which the force was mapped, figure 4.6. The ultimate limits on the magnitude of the
achievable interaction force were found to be the mass m of the UAV and the ratio smr
of manipulator length to the rotor radius.

4.2 Controller
In this section the controllers from chapter 3 are added to the dynamic model. The
contact force is traced back through the controllers to the inputs to the position con-
troller, resulting in the description of a force controller. The constraints of the cascaded
PID control scheme are evaluated to identify a realisable subregion of the operating
region and establish the maximum realisable contact force. Finally, the effects of PID
controller gains are discussed.

4.2.1 Mapping force to controller input
Mapping the desired contact force to the requisite input to the position controller is a
three step process. First, map the desired contact force to the pitch angle. Second, map
the physical pitch angle to the reference pitch input to the attitude controller. Third,
map the reference pitch to the reference x-position input to the position controller.
As the outer loop, the position controller takes inputs directly from the user. In section
4.1, the operating region of the UAV was analysed in terms of thrust force and pitch
angle. Where the pitch angle is related to the choice of the reference x-position, the
thrust force is related to the reference z-position, the altitude reference. In this section
it will be assumed that the end-effector initiates contact with the wall at the height
zref which will be held constant. As the UAV pitches, the body will rotate around the
end-effector and the center of mass of the UAV will rise. The location of the center of
mass is then given by,

zcom = zref + LmSθ (4.21)
Taking the altitude controller from equations 3.29 and 3.31 in section 3.3.3,

Tref = m

Cθ
uz = m

Cθ
(kp,zep,z + kd,zed,z + ki,zei,z + g) (4.22)

The UAV is stationary and therefore the derivative of the error is zero, ed,z = 0. Setting
the integral gain to zero, ki,z = 0, the relevant parameters become the proportional

50 4 Contact

components, kp,z and ep,z. (This process will be repeated for the other PID controllers
below. The integral gain will be discussed in section 4.2.3.) The z-position of the UAV
is measured from its center of mass, so the error is ep,z = zref − zcom and

Tref = m

Cθ
(kp,z(zref − zcom) + g) = mg

Cθ
− mkp,zLmSθ

Cθ
(4.23)

where mg/Cθ is the hovering thrust and the other term represents the altitude controller
action. This is the thrust force T that will be assumed for the duration of this section.
To map the contact force to the pitch angle, recall equation 4.11 from section 4.1, and
the assumptions φ = 0 and ψ = 0,

f Ic = −T

 Sθ
0
Cθ

−

 0
0

−mg

 =

 −TSθ
0

−TCθ +mg

 (4.24)

The normal force fn is the force of interest, here the x component |fn| = |TSθ|. The
mapping, then, from pitch to force is

|fn| =
∣∣∣∣∣mgSθCθ

− mkp,zLmS
2
θ

Cθ

∣∣∣∣∣ (4.25)

From this equation there is no clear derivation of the reverse mapping. Figure 4.7 plots
the reverse mapping computed numerically.

Figure 4.7: Mapping from normal force to pitch angle with m = 2.2kg. Note that only
pitch angles θ ≤ 32.5 are within the operating region.

4.2 Controller 51

To map the physical pitch angle to the reference pitch angle, recall the attitude controller
defined in equation 3.27 and 3.28, and consider only the pitch component

τBθ = uθ
Iyy

= 1
Iyy

(kp,θep,θ + ki,θei,θ + kd,θed,θ)

As before, the relevant parameters are the proportional components, kp,θ and ep,θ. To
remain stationary, the pitch torque output of the attitude controller must counteract
the pitch torque from equation 4.18

τBθ = kp,θep,θ
Iyy

= kp,θ(θref − θ)
Iyy

= Lm(T −mgCθ) (4.26)

Solving for θref,
θref = θ − IyyLm(mgCθ − T)

kp,θ
(4.27)

Figure 4.8 shows the required reference pitch to maintain stationary contact as a function
of the pitch angle. The plot shows that θ is only responsive to changes in θref up to the
inflection point at θ = 15.3◦, θref = 8.74227◦. In other words, the inflection point is the
upper bound on the realisable pitch angles. Through equation 4.25, plotted in figure 4.7,
the inflection point at θ = 15.3◦ bounds the realisable interaction force at |fn| = 5.77619.

Figure 4.8: Reference pitch (in blue) required for stationary contact as a function of
pitch angle θ. The dashed red line marks the inflection point at θ = 24.2◦, θref = 13.1458◦.
The dashed black line represents the mapping in free flight, namely the identity function.
The parameters used can be found in table 3.1. Additionally, Lm = 0.62m.

To map the reference pitch to the reference x-position input to the position controller
recall the x-position controller from equation 3.35 in section 3.3.4,

θref = ux = kp,xep,x + kd,xed,x + ki,xei,x (4.28)

52 4 Contact

As before, the relevant parameters are the proportional components,

θref = kp,xep,x = kp,x(xref − x) (4.29)

When in static contact, the position x of the UAV is stationary and equal to

xc = xw − LmCθ (4.30)

where xc is the position of the UAV in contact and xw is the x-position of the contact
surface.
Once in contact with the wall, the position controller becomes a proxy for the attitude
controller with a scaling of kp,x. That is, to pass some reference pitch θref to the attitude
controller, the reference x-position error should be

ep,x = xref − xc = θref

kp,x
(4.31)

The complete mapping of the interaction force to the position error is the combination
of equations 4.25, 4.27, and 4.31. Figure 4.9 plots the mapping, computed numerically.

Figure 4.9: Mapping from interaction force to x-position error input, with m = 2.2kg.
The dashed red line indicates the upper bound on the realisable interaction force.

This is effectively a mapping to x-position reference because, given some position error,
it will always be possible to choose some position reference to achieve it. The map can
be used to choose an x position reference to achieve a desired interaction force. In effect,
this allows for the creation of a force controller as an outer loop. Letting the mapping

4.2 Controller 53

from interaction force to x-position error be denoted as ep,x = E(fn), a force controller
can then be written

uf = E(fn) + x (4.32)

where uf = xref. The mapping E(fn) does not lend itself to an analytic solution. A solu-
tion might be implemented with a lookup table of pre-computed values, or a polynomial
can be used to fit the numerical data.

4.2.2 Realisable region of pitch angle and thrust force
The mapping from interaction force to x position reference was done assuming a fixed
z reference. Within the operating region, the mapping traces a line, shown in figure
4.10. The line represents the pitch angles and thrust forces realisable by varying the x
component reference input to the position controller in the range of the mapping.

Figure 4.10: The realisable pitch angle and thrust force for a fixed zref plotted in red.
The line lies within a subsection of the operating region realisable when using a cascaded
PID control scheme.

More pitch angles and thrust forces can be realized by also varying the z component
reference input to the position controller. When varying zref by some amount δz, the
thrust from equation 4.23 changes to,

T = m

Cθ
(kp,z(zref + δz − zcom) + g) = mg

Cθ
+ mkp,z(δz − LmSθ)

Cθ
(4.33)

54 4 Contact

The bound on the realisable pitch angles was found by identifying the inflection point
in equation 4.27. More formally, the bound was found by solving

dθref

dθ
= 1 − LmIyy

kp,θ

(
∂

∂θ
T +mgSθ

)
= 0 (4.34)

To find the entire realisable region of pitch angles and thrust, this process was repeated
for thrusts T with varying δz. Figure 4.11 plots this realisable region in pink.

Figure 4.11: Realisable Region: The realisable region of pitch angle and thrust force
is shown in pink. This region represents the set of achievable pitch angles and thrust
forces when using a cascaded PID control scheme.

4.2 Controller 55

Figure 4.12: Contact force magnitude in the realisable region of pitch angle and
thrust force. The maximum possible interaction force |fn| = 0.296829mg occurs at
θ = 13.8214◦, T = 1.2425mg.

Looking closely at equation 4.34, it is evident that the location of the of the bound on
the realisable region scales with manipulator length Lm and the attitude controller gain
kp,θ. To optimize the UAV design for a large realisable region, the manipulator should
be made as short as possible and the attitude controller gains should be made large.

4.2.3 Effects of PID controller gains
In this section, the mapping of the realisable region involved three PID controllers, the
pitch controller, the x position controller and the z-position controller. The realisable
region in figure 4.11 was generated with the assumption that the integral gains ki of all
three were held at 0. What would be the effect of non-zero integral gains?
The most interesting case is that of the pitch controller. The bound on the realisable
region was found when mapping from the pitch angle to the pitch reference. Equations
4.35 and 4.36 reintroduce the integral gain to the mapping from pitch angle to pitch
reference.

τBθ = kp,θep,θ + ki,θei,θ = kp,θ(θref − θ) + ki,θ

∫ t

0
ep,θ = IyyLm(T −mgCθ) (4.35)

θref = θ − LmIyy
kp,θ

(T −mgCθ) − ki,θ
kp,θ

∫ t

0
ep,θ (4.36)

The pitch error is invariably negative, which can be in figure 4.8, so the final integral
term brings the pitch reference closer to the pitch angle. With a non-zero integral gain

56 4 Contact

ki,θ, the integral action of the controller grows over time. This has the effect of pushing
the inflection point away from zero, effectively extending the range of the realisable
region. This effect grows stronger with larger values of ki,θ.
The effect of non-zero integral gain is not so helpful for the x position controller. The
position error ep,x is what produces the θref required to maintain contact. The constant
relationship between the proportional error and the pitch reference is what allows for
a meaningful mapping between x position reference and interaction force. A non-zero
integral gain interferes with this relationship and will always drive the UAV to larger
and larger values for θref.
For the altitude controller, the effect of a non-zero integral gain is not so pronounced.
Where the x position controller and the pitch controller both affect the realisable pitch
angle, the altitude controller controls the thrust force. From figure 4.11 it is evident
that the realisable region is largely constrained by the pitch angle. Consequently the
altitude controller minimally affects the realisable region.

4.3 Simulation

To verify the results of the analysis in sections 4.1 and 4.2, the UAV is simulated with
the manipulator. Simulations of contact are done using the PID position controllers
from chapter 3. A force controller is implemented and simulated using the map from
interaction force to x position reference found in section 4.2.
In the simulation model, the rigid manipulator is modelled as a thin cylinder extending
out from the center of mass with a spherical tip. The wall is a rectangular block with
the contact surface located at x = 2m. The UAV starts at x = 0 and so the simulation
begins with the UAV in free flight before establishing contact. The manipulator and
contact implementation in Simulink is shown in figure 4.13.

4.3 Simulation 57

Figure 4.13: Implementation of the rigid manipulator and contact in Simulink using
blocks from the Simscape Multibody Toolbox.

Simulations made use of the parameters listed in table 3.1, as well as additional param-
eters listed in table 4.1.

Coefficient of static friction µ 0.7
Manipulator length Lm 0.62 m
Manipulator to rotor length ratio smr 2

Table 4.1: Simulation parameters.

To simulate a contact scenario, the simulated UAV was fed position and yaw references.
The yaw and y position references were set to 0 and the z position reference was held at
1m. The x position reference was a step input to bring the end-effector into contact with
the wall, followed by an increase of 0.1m every 5 seconds. The x and z positions and
pitch angle θ of the simulated UAV are shown in figure 4.14. Note how the controlled
values diverge from their reference inputs. The divergence of the pitch angle from its
reference is of particular interest as it was this divergence in the model, in figure 4.8,
which set the upper bound on the realisable pitch angles.

58 4 Contact

Figure 4.14: From top to bottom: x position, z position, and pitch angle θ of simulated
UAV with rigid manipulator. The reference provided to the controllers is shown by the
dashed black line, the real positions/angles are shown in blue.

It is evident from the plots in figure 4.14 that the UAV becomes unstable after the
final step at t = 138s. The UAV moves beyond the pitch bound of 15.3◦ afterwords at
t = 139.73s as shown in figure 4.15 by the horizontal and vertical dashed red lines.

4.3 Simulation 59

Figure 4.15: Plot of the pitch angle during simulation from figure 4.14, omitting the
UAVs initial free flight. The dashed horizontal line is the inflection point from figure 4.8.
The dashed vertical line is the time of occurrence.

Figure 4.16 plots the simulated pitch reference against the pitch angle from the simula-
tion, creating a staircase shape in blue. The modelled pitch reference calculated using
equation 4.27 and pitch and thrust data from the simulation is shown in orange. The
rightmost ‘inner’ corner of each step represents the steady state for each step in θref. For
all but the final step, the steady state position lies on the orange line. On the final step,
the pitch reference has moved beyond the orange line and so is outside of the realisable
region. Here the UAV is not capable of maintaining a steady state.

60 4 Contact

Figure 4.16: Pitch angle reference plotted against pitch angle. The blue line shows the
simulation result. The orange line shows the θref calculated from the model using the
simulation θ and T . At the final step, the pitch reference and pitch angle have moved
beyond the realisable region.

Figure 4.17 plots the position error ep,x against the generated interaction force, with the
rightmost inner corner of each step once again showing the steady state. The vertical
lines of the steps are caused by step changes in the input, the horizontal component
comes from the UAV responding to the new input. The orange line plots the simulation
data smoothed with a moving average filter and is very close to the modelled mapping
in figure 4.7. It is clear from the figure that the simulated UAV is no longer responds
to changes in the x-reference at ep,x = 0.85, |fn| = 6.

Figure 4.17: The x position error plotted against the applied interaction force.

4.3 Simulation 61

Figure 4.18 shows the path of the UAV through the operational region. The simu-
lated UAV initiates contact in the realisable region of pitch angle and thrust force. At
t = 139.73s, the UAV becomes unstable as it crosses the inflection point and pitches
uncontrollably towards the wall.

Figure 4.18: The path of the UAV, through the realisable region, in red, and the
operating region, dashed cyan line.

The correspondences between the simulation and the predictions of the dynamic model
in figures 4.16, 4.17 and 4.18 demonstrate that the simulation verifies the dynamic model.
Video of the simulation can be found at https://youtu.be/YDhtoYAdNfE.
To add the force controller from equation 4.32 to the UAV in simulation, the mapping
E(fn) was implemented by fitting a third order polynomial to the simulation data in
figure 4.7. The force controller was implemented such that, once the UAV was in contact
with the contact surface, the computed error term would be added to the measured
position. The implementation in Simulink is shown in figure 4.19.

https://youtu.be/YDhtoYAdNfE

62 4 Contact

Figure 4.19: Implementation of force controller in Simulink using a fitted polynomial.

Figure 4.20 shows the results of a simulation with the force controller. The output force
stops responding to the input reference at 6.3N, setting the maximum interaction force
at 38.7% of the UAVs weight.

Figure 4.20: Force input, in orange, and simulated output, in blue, of UAV with force
control. The output of the controller stop being responsive to the input at 6.3N which
is 38.7% of the UAV’s weight.

4.4 Experimentation
Experimental flight tests were conducted to verify the modelling and analysis from the
previous sections. This section will present the data from one such flight test with three
contact events. The experimental setup is described first, followed by presentation of

4.4 Experimentation 63

the flight data. Finally, the correspondence between the experimental data and the pre-
dictions of the model and simulations is assessed and the impacts of model assumptions
are discussed.

4.4.1 Setup

The physical UAV was affixed with a narrow length of carbon fiber tube attached rigidly
to the leftmost rotor arm. The test flight was conducted by setting the z position
reference to 1m and the y position reference to 0 for the duration of the flight. The
x position reference was stepped up until the UAV made contact with the wall and
then onward until either the UAV became unstable or the manipulator slipped. In the
cases where the manipulator slipped, the x reference was pulled away from the wall and
another attempt was made. When the UAV became unstable, a ‘kill’ switch was pulled
which stopped the motors to limit the damage from a crash.
The parameters of the physical UAV used for the experiments in this section are listed
in table 4.2. The value for the coeffecient for static friction µ was estimated from the
flight data. The manipulator length Lm was chosen to ensure ample clearance between
the propellers and the contact surface.

Coefficient of static friction µ 0.7
Manipulator length Lm 1.05 m
Rotor length Lr 0.31 m
Manipulator to rotor length ratio smr 3.4
Mass m 2.2 kg

Table 4.2: Parameters of the physical UAV used for experiments.

4.4.2 Results

Figures 4.21 and 4.22 show the x-position and pitch angle data collected from a contact
flight. Three contact attempts were made, which can clearly be seen in the pitch angle
data. The first two contact events ended with the manipulator slipping. The final
contact event ended with the UAV pitching and yawing around the point of contact.

64 4 Contact

Figure 4.21: Plot of the x position of the UAV, in blue, and the x position reference,
in orange.

Figure 4.22: Plot of the pitch angle θ, in blue and the pitch angle reference θref, in
orange.

4.4 Experimentation 65

(a) UAV in contact.

(b) UAV after slipping.

(c) UAV in pitching and yawing uncontrollably.
(d) UAV after losing contact.

Figure 4.23: Images of the UAV during different stages of contact. In (a) the UAV
is in stable contact shortly before the end-effector begins slipping. In (b) the UAV
immediately after the end-effector has slipped. In (c) the UAV in the process of pitching
uncontrollably. In (d) the UAV has lost contact with the wall as a result of uncontrollable
pitching and yawing.

The parameters of the physical UAV are shown in table 4.2. Figures 4.24, 4.25, and 4.26
show the path of the UAV through the realisable region of pitch and thrust for each of
the contact events. They feature a point cloud of the path with the gradient from black
to red indicating the chronological order, plotted on top of the realisable region map,
redrawn considering the parameters in table 4.2.
The first contact event lasted 30 seconds and concluded with the end-effector slipping
down the contact surface and the UAV suddenly pitching. Figure 4.24 shows a scatter
plot of the measured thrust against the measured pitch, plotted over the realisable region.
The points are colored, from black to red, to represent the chronological order. The path
of the UAV through the realisable region of pitch reveals why the end-effector slips. The
path leads out of the operating region, falling below the friction bound, causing the
end-effector to begin to slip. The force applied by friction falls as it changes from static
friction to kinetic friction and the contact torque suddenly drops, leading to an imbalance
between the torque generated by the UAV and the torque generated from contact. This
imbalance causes the UAV to suddenly pitch, the large distances between the final points
indicating speed of the change.

66 4 Contact

Figure 4.24: First contact event: Path of the UAV through the realisable region of
pitch angle and thrust force.

The second contact event lasted for 20 seconds and once again ended with the end-
effector slipping. The path of the UAV in figure 4.25 during this contact event tells
a similar story. Once again the UAV falls below the operating region, leading to the
end-effector slipping and a rapid increase in pitch.

Figure 4.25: Second contact event: Path of the UAV through the realisable region of
pitch angle and thrust force.

The third and final contact event of the flight had a duration of 45 seconds and concluded
with the UAV pitching uncontrollably. The path of the UAV in figure 4.26 for the final

4.4 Experimentation 67

contact event goes in a different direction. The UAV remains in the operating region
for the duration of the event and instead moves beyond the rightmost bound on the
realisable region, where it begins to pitch uncontrollably. Along with the pitch, the
UAV also begins to yaw to the left, which is not depicted in the figure.

Figure 4.26: Third contact event: Path of the UAV through the realisable region of
pitch angle and thrust force. The black arrow points to the apparent actual bound on
the realisable region.

Figure 4.27 shows the mapping from pitch angle to pitch reference calculated using the
parameters of the physical UAV. The inflection point occurs much earlier than in figure
4.8, where Lm is shorter.

68 4 Contact

Figure 4.27: Mapping from pitch angle to pitch reference. Inflection point in red.

Figure 4.28 shows the estimated interaction force during the course of the flight test and
the three contact events. The estimate is calculated using equation 4.11 with the mea-
sured orientation and the estimated thrust force. The largest interaction force achieved
during the test flight was 5N, representing 0.2318mg.

Figure 4.28: Estimated interaction force.

Video of the experiment can be found at https://youtu.be/HGvCuHRceUw. The flight
data can be found at https://github.com/paullassen/Flight-Data-Modelling-and-
Control-of-an-Aerial-Manipulator/.

https://youtu.be/HGvCuHRceUw
https://github.com/paullassen/Flight-Data-Modelling-and-Control-of-an-Aerial-Manipulator/
https://github.com/paullassen/Flight-Data-Modelling-and-Control-of-an-Aerial-Manipulator/

4.5 1-DOF Manipulator 69

4.4.3 Discussion
The three contact events presented in this section match the predictions of the model
and simulations.
The friction bounds found in section 4.1 explain the end-effector slipping in the first two
contact events. With regard to the correspondence between the friction bound and the
occurrence of the end-effector slippage in the flight data, it should be noted that the
coefficient of static friction µ and the resulting friction bound were estimated from the
flight data. Ideally, µ should have been measured independently.
The uncontrolled pitching in the third contact event can be explained by the UAV
pitching beyond the inflection point in figure 4.27 and out of the realisable region. In
figure 4.26, the path of the UAV seems to pass beyond the bound of the realisable region
several times without becoming unstable, indicating that the calculated pitch bound
on the realisable region, in pink, is short of the apparent actual bound, indicated by
the black arrow, by approximately 2◦. This difference between the calculated bound
and the apparent actual bound is likely due to differences between the onboard attitude
controller and the proportional pitch controller considered in section 4.2. Equation 4.36
implies that the bound on the realisable region is fundamentally tied to the attitude
control structure. The onboard attitude controller is a nonlinear controller which feeds
angular velocity references to a PID angular rate controller [18] and so has a different
behaviour than that of the PID controller considered in section 4.2, as discussed in
section 3.4.3. Even if it were a PID controller, different gains would lead to different
bounds of the realisable region.
Modelling the attitude controller as a PID controller is one of several simplifying assump-
tions made when developing the dynamic and simulation models. Other assumptions
include perfect measurement, windless environment, and zero yaw and roll, which are
not accurate in the actual experiments. Despite these challenges, the experiments reflect
the predictions from the modelling and simulations.

4.5 1-DOF Manipulator

4.5.1 Modelling
The second manipulator configuration in this chapter is a 1-DOF Manipulator. This
manipulator configuration adds a revolute joint between the center of mass and the base
of the manipulator. The revolute joint rotates around the y−axis of the body fixed frame
parameterized by the angle α. The position of the end-effector in this configuration is
then given by

ξBe =

 Cα 0 Sα
0 1 0

−Sα 0 Cα

 Lm

0
0

 = Lm

 Cα
0

−Sα

 (4.37)

70 4 Contact

This configuration provides a crucial advantage over the rigidly connected manipulator
in the previous section by allowing the manipulator to rotate to counter the pitching
motion of the UAV. By setting α = −θ, and once again assuming that the roll and yaw
angles are negligible, the position of the end-effector in the body and local frame become

ξBe =

 LmCθ
0

LmSθ

 (4.38)

ξLe = RL
BξBe =

 Lm
0
0

 (4.39)

The equation shows that this configuration allows the UAV to keep the end-effector
aligned with the x-axis in the local frame. Recalling the discussion at the beginning of
section 4.1, the axes of the local frame are parallel to those of the inertial frame, and
their x-axis is perpendicular to the contact surface and, thereby, parallel to the normal
force. This alignment limits the generation of torques from contact.
The force generated by contact in equation 4.11 is unaffected by the manipulator con-
figuration. With the assumption that the roll and yaw angles are zero, the contact force
is

f Ic =

 −TSθ
0

mg − TCθ

 (4.40)

The z component is the friction force. Once again, the analysis in this section is only
valid within the static friction bound from figure 4.1.
The torques on the UAV resulting from contact are calculated by rotating the contact
forces into the body frame and applying them at the end-effector, ξBe in equation 4.38,

τB
c = S(ξBe)RB

I f Ic =

 0
Lm(TCθ −mg)

0

 (4.41)

By keeping the end-effector perpendicular to the contact surface, the torque experienced
by the UAV during contact can be minimized. This can most clearly be seen in the
specific case of hovering thrust, T = mg/Cθ, where the torque becomes zero,

τB
c =

 0
Lm(mgCθ

Cθ
−mg)

0

 = 0 (4.42)

To find the limits of the UAV in contact, the counter torque is once again followed

4.5 1-DOF Manipulator 71

through the motor mixer. Setting the wrench wc,

wB
c =

[
T

−τB
c

]
=

T
0

Lm(mg − TCθ)
0

 (4.43)

and passing it through the motor mixer M , the squared motor speeds ΩB
c required

during contact are

Ωc = MwB
c = 1

6k

T +
√

3smr(TCθ −mg)
T

T −
√

3smr(TCθ −mg)
T −

√
3smr(TCθ −mg)

T

T +
√

3smr(TCθ −mg)

(4.44)

The motor speeds are bounded by zero and ωmax. Therefore the front motor pair (1st
and 6th) must satisfy

0 ≤ 1
6k
(
T +

√
3smr(TCθ −mg)

)
≤ ωmax (4.45)

and the rear motor pair (3rd and 4th) must satisfy

0 ≤ 1
6k
(
T −

√
3smr(TCθ −mg)

)
≤ ωmax (4.46)

Solving for θ,

arccos
(
mg

T
− 1√

3smr
+ 6kωmax√

3smrT

)
≤ θ ≤ arccos

(
mg

T
− 1√

3smr

)
(4.47)

arccos
(
mg

T
+ 1√

3smr
− 6kωmax√

3smrT

)
≥ θ ≥ arccos

(
mg

T
+ 1√

3smr

)
(4.48)

Figure 4.29 plots these bounds.

72 4 Contact

Figure 4.29: Motor bounds on pitch angle and thrust force from equations 4.47 and
4.48.

The dashed black line describes the hover thrust and thus the line of zero contact torque,
per equation 4.41. The point where the upper bounds of both the front and rear motor
pairs meet the dashed line of the hover thrust represents the maximum achievable thrust
T = 3.7mg. The hover thrust separates the behaviour of the UAV into two modes, under-
thrust and over-thrust. When under-thrusting, the body of the UAV begins to accelerate
downward. Friction at the end-effector results in a negative torque and the UAV must
generate enough counter torque to avoid tilting backwards. When the thrust is below
the front rotors lower bound or the pitch exceeds the rear rotors upper bound, the front
rotors can no longer contribute sufficiently to the torque and so the UAV tilts backwards
and falls. When the total thrust is at more than half of the maximum, the upper bound
on the rear motors takes over as the limiting factor. Conversely, when over-thrusting,
the UAV must generate torque to counter the contact torque tilting it into the contact
surface. When the thrust exceeds the front rotors upper bound or the rear rotors lower
bound, the UAV tilts forward into the contact surface.
Figure 4.30 shows the region bounded by the inequalities depicted in figure 4.29.

4.5 1-DOF Manipulator 73

Figure 4.30: Combined motor bounds on pitch angle and thrust force. Note that this
bound is only valid within the friction bound in figure 4.1.

Figure 4.31 plots the motor bounds on top of the friction bound from figure 4.1. The
motor bound is only valid in the yellow region of the static friction bound. The green
region represents the operating region of pitch angle and thrust force.

Figure 4.31: Operating region for a 1-DOF manipulator.

Figure 4.32 plots the magnitude of the contact force across the operating region.

74 4 Contact

Figure 4.32: Contact force as a function of pitch angle and thrust force. Both the
thrust force and contact force are scaled by mg. Note that the maximum contact force
|fn| = 3.62802mg occurs at the upper right of the operating region.

Notice that the maximum contact force occurs at hover thrust with all the rotors at
maximum speed. The UAV doesn’t need to generate any torque because there is zero
contact torque from the 1-DOF manipulator to counter at hover thrust.
The situation with the rigid manipulator in section 4.1 was very different. The contact
force was always accompanied with contact torque and the UAV needed to counter with
increasing torque at higher pitch angles. Consequently, the torque bound from figure
4.4 placed a pitch bound on the operating region in figure 4.5. Moreover, the analysis in
section 4.2 found that the realisable region, achieved using the controllers, was limited
by a smaller realisable pitch bound. The realisable pitch angle is bound by the inflection
point of the mapping from pitch angle θ to reference pitch θref in figure 4.8, the point
where the attitude controller stops being responsive to increases in the reference pitch.
The divergence of the reference pitch from the pitch angle is entirely driven by the torque
from contact, as the mapping is derived from equation 4.27 which relates the pitch error
to the contact torque.
For the 1-DOF manipulator, the only meaningful torques appear far from the hover
thrust, which is not useful for contact. At hover thrust, T = mg/Cθ, the contact torque
is zero and the mapping from pitch angle to pitch reference for the 1-DOF becomes

θref = θ − LmIyy(mg − TCθ)
kp,θ

= θ (4.49)

and the pitch angle is perfectly responsive to reference pitch. Consequently, the entire
operating region is realisable and the force controller is simpler to derive than for the
rigid manipulator in section 4.2 and can be done analytically.

4.5 1-DOF Manipulator 75

As in section 4.2, the force controller is derived from the mapping from interaction force
to x position error. Taking the normal force from equation 4.40 and assuming hover
thrust,

fn = TSθ = mg

Cθ
Sθ = mgTθ (4.50)

Rearranging this to solve for θ and considering the position controller, like in equation
4.29,

θ = arctan
(
fn
mg

)
= kp,xep,x (4.51)

Finally, solving for ep,x

ep,x = 1
kp,x

arctan
(
fn
mg

)
(4.52)

Figure 4.33 plots the mapping from contact force to x position error. Note that the
mapping increases monotonically in contrast to the corresponding mapping for the rigid
manipulator in figure 4.7.

Figure 4.33: Mapping from interaction force to x position error. Note that ep,x in-
creases with the force over the entire range.

The force controller described by this mapping is then

uf = 1
kp,x

arctan
(
fn
mg

)
+ x (4.53)

where xref = uf .

76 4 Contact

4.5.2 Simulation

To verify the results of the analysis in section 4.5.1, the UAV is simulated with the
1-DOF manipulator.
In the simulation model, the 1-DOF manipulator is modelled as a thin cylinder extending
out from the center of mass with a spherical tip connected to the center of mass through
a revolute joint. The wall is a rectangular block with the contact surface located at
x = 2m. The UAV starts at x = 0 and so the simulation begins with the UAV in
free flight before establishing contact. The manipulator and contact implementation in
Simulink is shown in figure 4.34.

Figure 4.34: Implementation of the 1-DOF manipulator in Simulink using the Sim-
scape Multibody Toolbox.

To simulate a contact scenario, the simulated UAV was fed position and yaw references.
The yaw and y position references were set to 0 and the z position reference was held
at 1m. The x position reference was a step input to bring the end-effector into contact
with the wall, followed by an increase of 0.1m every 5 seconds. The simulation was
aborted at t = 87s when the UAV crashed. The x and z positions and pitch angle θ of
the simulated UAV are shown in figure 4.35.

4.5 1-DOF Manipulator 77

Figure 4.35: From top to bottom: x position, z position and pitch angle θ of simulated
UAV with 1-DOF manipulator. The reference provided to the controllers is shown by
the black dashed line, the real positions and angles are shown in blue. The pitch angle
exactly matches the pitch reference and does not exhibit the divergence seen in the case
of the rigid manipulator in figure 4.14.

The simulated UAV is able to achieve a pitch angle of 30◦ before yawing uncontrollably
and ultimately crashing. Figure 4.36 plots the pitch, roll and yaw of the UAV in the
last seconds of the simulation. Notice that the roll and yaw angles become non-zero in
the last 5 seconds of the simulation.

78 4 Contact

Figure 4.36: From top to botttom: pitch angle θ, roll angle φ, and yaw angle ψ during
the last 10s of the simulation.

Figure 4.37 plots the relationship between the pitch angle and the pitch reference. This
relationship follows the identity closely, as suggested by equation 4.49.

Figure 4.37: Reference pitch plotted against the pitch angle. The blue line shows the
simulation result. The dashed black line shows the identity, where θref = θ. The inner
corner of each step represents the steady state, which fall along the identity. The long
tail which falls below the dashed black line represents the last 5s of the simulation.

Figure 4.38 shows the relationship between the interaction force and the x position error.
Up until the UAV loses control, it follows the mapping in equation 4.33 perfectly.

4.6 Discussion 79

Figure 4.38: The applied interaction force plotted against the x position error, in
blue. The orange line shows the mapping from interaction force to x position error as
calculated in equation 4.52. The line that travels to the left from the final step represents
the last 5s of the simulation.

Up until the UAV loses stability and crashes, it performs as predicted in the model in
section 4.5.1. The pitch angle follows the pitch reference throughout the simulation. The
failure exhibited in the crash was not captured in the model. The model was developed
around the assumption of zero roll and yaw. Figure 4.36 shows that these assumptions
were violated in the last 5s of the simulation. While the roll and yaw are zero at
t = 0, inspection of the simulation data reveals that they become infinitesimally non-
zero already after the first time step, t = 50µs. These slight errors compound over the
course of the simulation until they reach a visible order of magnitude at t = 82s. While
this is technically a small simulation error, a real UAV in flight would also experience
errors from a variety of sources.
The crash illustrates a weakness in the model, namely that it does not assess the roll or
yaw stability of the UAV in contact.
Video of the simulation can be found at https://youtu.be/W1jwW-kKRy8.

4.6 Discussion
In this chapter the dynamic model of a UAV in free flight was extended to describe the
dynamics of contact, including the contact forces and torques experienced by a UAV
with a mounted manipulator. For a UAV with a rigidly attached manipulator arm, an
operating region of pitch angle and thrust force based on the physical parameters of the

https://youtu.be/W1jwW-kKRy8

80 4 Contact

UAV was identified. A smaller realisable subregion was identified by analysing the flight
controllers. A force controller outer loop was designed and implemented in simulation.
Simulations were done to validate the modelling. Experiments were conducted with a
physical UAV mounted with a rigid manipulator, further verifying the modelling results.
The analyses of the rigid manipulator reveal that the primary UAV design parameter
affecting the applicable interaction force is the mass of the UAV, which should be maxi-
mized. Another important design parameter is the manipulator length, which should be
minimized. The applied interaction force is proportional to the mass, roughly equal to
mgSθ, per the discussion in section 4.1. Moreover, a shorter manipulator arm leads to a
larger realisable pitch θ and thus a larger applied interaction force. Attitude controller
design also influenced the maximum force application of the rigid manipulators. The
bound on the realisable region was found to scale with the proportional gain kp,θ of the
pitch controller.
A similar process was repeated for an actuated manipulator with one degree of freedom.
Analysis of the realisable and operating regions of both of the manipulators show that the
1-DOF manipulator configuration is the most suited to contact. Its ability to decouple
the contact torque from the UAV pitch angle allows the UAV to reach larger pitch angles
and thereby achieve larger interaction forces. This is not, however, the full story. The
results of the simulation in section 4.5.2 indicate that the UAV is sensitive to yaw and
roll, which were omitted from the dynamic model, by holding them at zero.
The experiments done in this chapter were of limited scope as explained in chapter 1.
In particular, the 1-DOF manipulator was never physically implemented and therefore
lacks experimental validation. Further experimentation would have included varying the
thrust T to map the entire realisable region experimentally. Additionally, flight tests
with varying manipulator lengths Lm would verify the model predictions of the effects
of this UAV design parameter. The force output of the UAV in the experiments was
estimated from the pitch and thrust data, rather than by measurement, which would
have provided direct verification.
Future work would be to extend the modelling of the realisable region to other attitude
control schemes, in particular to the non-linear attitude controller found on the PX4
flight controller. Moreover, to complete the description of the total applicable wrench,
the analysis in section 4.1 could be extended to consider the application of torque at the
point of contact. This would extend the task space of the UAV to the real world surface
contact applications motivating this thesis, including contact inspection, polishing, and
drilling.

CHAPTER 5
Conclusion

This thesis has evaluated the capabilities and limitations of drone control strategies for
aerial manipulators, motivated by real world surface contact applications such as contact
inspection, drilling, and polishing.
First, related research was surveyed, covering controller design, manipulator design, and
customized UAV designs for aerial manipulation. Previous studies omitted analyses of
the capabilities of the simplest manipulators and standard flight control schemes. This
thesis filled this gap.
The standard flight controller chosen for this thesis was the PixHawk 4, which is a PX4
flight controller. A coplanar hexarotor was built around it. Two simple manipulator
configurations were evaluated, a rigid manipulator arm and a 1-DOF manipulator arm.
The capabilities and limitations of the chosen UAV platform and manipulators were
evaluated through dynamic modelling, simulations, and experimentation. Evaluation of
a UAV in free flight was done first, to lay the groundwork, in chapter 3. This was then
extended, in chapter 4, to include contact analysis.
The dynamic model was developed from the Newton-Euler formulation of the laws of
motion, first in free flight and then with a manipulator in contact with a surface. A
motor mixer to control the rotor speeds to produce a desired wrench was derived.
The simulation model was developed in MATLAB and Simulink, with the Simscape
Multibody Toolbox, modeling the evolution of the UAV’s state under the influence of
the forces and torques acting on it. Moreover, a cascaded control scheme, with a PID
attitude controller inner loop and a PID position controller outer loop, was implemented
in simulation.
The physical UAV was constructed and the experimental setup, with the MOCAP system
and the ground station, was built. A command line interface was developed to control
the UAV over a ROS network. Using ROS to receive measurements from the MOCAP
system and targets from the CLI, and MAVSDK to send commands to the Pixhawk 4,
the PID position controller was implemented on the UAV flight computer. A method
to compensate for the motor voltage dropping as the battery discharged was developed
and included in the position controller implementation.
A test rig was designed, printed, and assembled to collect the data required to tune the
PID attitude controller gains in simulation.
The capabilities of the hexarotor platform with a simple manipulator were evaluated

82 5 Conclusion

in terms of pitch angles and thrust forces. The goal of static contact is to apply an
interaction force to a surface while stationary, confining the pitch angle and thrust force
within the limits of static friction. An operating region was identified based on the
physical limitations of the platform, specifically the limitations of the motors, which
translate to a limit on the achievable reaction torque. This is particularly pronounced
for a UAV with a rigid manipulator, as the nature of contact results in torque. For a
UAV with a 1-DOF manipulator, much of this torque can be eliminated by actuation
and so the operating region extends to larger pitch angles and thrust forces where the
interaction force is larger.
A force controller was developed by tracing the contact force back through the cascaded
controller to create a mapping from the interaction force to position controller input.
This analysis revealed that, for the rigid manipulator, not all of the operating region
could be reached, but only a subregion was realisable using the controller. The attitude
controller proved to be the limiting factor, specifically the proportional gain of the pitch
controller.
The force controller was implemented and validated in simulation. Simulations of the
UAV with each of the two manipulators were conducted. For the rigid manipulator, the
simulated UAV became unstable outside the realisable region, validating the analysis.
For the 1-DOF manipulator, the UAV failed unexpectedly, revealing its sensitivity to
yaw and roll, which were held at zero in the dynamic model.
Experiments were conducted with a physical UAV mounted with a rigid manipulator,
further verifying the modelling results.
Two UAV design parameters were identified as key to maximizing the magnitude of the
interaction force. The primary design parameter is the mass of the UAV. Increasing
the mass of the UAV increases the interaction force which can be applied. The other
key design parameter is the manipulator length, particularly in the case of the rigid
manipulator. The shorter the manipulator, the smaller the contact torques experienced
by the UAV, leading to larger realisable pitch angles.
Attitude controller design also influenced the maximum force application of the rigid ma-
nipulators. The bound on the realisable region was found to scale with the proportional
gain kp,θ of the pitch controller.
This thesis has met the objectives stated in chapter 1. The capabilities of a standard
UAV configuration were evaluated by modelling, simulation, and experimentation. The
dynamic models and experiences from the simulations and flight tests suggested recom-
mendations for designing simple manipulators for coplanar multirotors.

APPENDIXA
Source Code

Two programs are presented in this appendix, the C++ program implementing the
position controller on the Raspberry Pi 3+ and a Python script for communicating with
the flight computer from the control computer using a command line interface, running
Ubuntu 18.04. Both the C++ program and the Python script were included in a single
ROS package.
Two launch files are included in this package. The first, startup.launch, is started on the
control computer and used to initialize the environment. It begins broadcasting data
from the MOCAP system and starts drone_ui.py containing the CLI.
The second launch file, fly.launch, is started on the Raspberry Pi flight computer and
launches the flight code. The flight code consists of uav_monitor.h, uav_monitor.cpp,
mavsdk_helper.h, mavsdk_helper.cpp and ros_interface.cpp.

• uav_monitor.h provides a description of the UavMonitor class, which implements
the position controller and ROS subscriber callbacks, and the description and
implementation of the Triplet class, which provides convenient arithmetic for the
many triplets found in the program.

• uav_monitor.cpp provides the implementation of the UavMonitor class.

• mavsdk_helper.h and mavsdk_helper.cpp describe and implement many useful
helper functions for interfacing with the Pixhawk 4 over MAVlink.

• ros_interface.cpp is the main file. It initializes the MAVlink connection with the
Pixhawk 4, the ROS connection and the UavMonitor instance. It also handles the
broadcasting of data from the UAV.

It should be noted the mavsdk_helper.h and mavsdk_helper.cpp are adapted from
one of the MAVSDK example programs. ros_interface also makes use of this exam-
ple code. The example code can be found at: https://github.com/mavlink/MAVSDK/
blob/main/examples/offboard_velocity/offboard_velocity.cpp

The rest of this appendix is dedicated to the raw source code.

https://github.com/mavlink/MAVSDK/blob/main/examples/offboard_velocity/offboard_velocity.cpp
https://github.com/mavlink/MAVSDK/blob/main/examples/offboard_velocity/offboard_velocity.cpp

84 A Source Code

The structure of the ROS package is:

offboard-aut-dtu

include

mavsdk_helper.h

uav_monitor.h

src

flight

mavsdk_helper.cpp

ros_interface.cpp

uav_monitor.cpp

control

drone_ui.py

launch

fly.launch

startup.launch

msg

Health.msg

config

mocap.yaml

drone.yaml

CMakelists.txt

Package.xml

Figure A.1: ROS package structure.

List of source codes
1 uav_monitor.h . 90
2 uav_monitor.cpp . 96
3 mavsdk_helper.h . 97
4 mavsdk_helper.cpp . 103
5 ros_interface.cpp . 107
6 drone_ui.py . 114
7 fly.launch . 115
8 startup.launch . 116
9 mocap.yaml . 117
10 drone.yaml . 117
11 Health.msg . 117

86 A Source Code

1 #ifndef UAV_MONITOR_H
2 #define UAV_MONITOR_H
3
4 #include <geometry_msgs/Point.h>
5 #include <geometry_msgs/PoseStamped.h>
6 #include <offboard/Health.h>
7 #include <ros/ros.h>
8 #include <std_msgs/Bool.h>
9 #include <std_msgs/Float32.h>

10 #include <tf2_geometry_msgs/tf2_geometry_msgs.h>
11 #include <tf2_ros/buffer.h>
12 #include <tf2_ros/transform_listener.h>
13
14 #include <semaphore.h>
15 #include <chrono>
16 #include <cmath>
17 #include <future>
18 #include <iostream>
19 #include <thread>
20
21 #include <mavsdk/mavsdk.h>
22 #include <mavsdk/plugins/action/action.h>
23 #include <mavsdk/plugins/info/info.h>
24 #include <mavsdk/plugins/offboard/offboard.h>
25 #include <mavsdk/plugins/telemetry/telemetry.h>
26 #include "mavsdk_helper.h"
27
28 #define LIST_SIZE 10
29 #define MANIPULATOR_MAXIMUM 605
30 #define MANIPULATOR_MINIMUM 405
31
32 struct param_struct {
33 float mass;
34 float length;
35 int mode;
36 };
37
38 template <class T>
39 class Triplet {
40 private:
41 T x;
42 T y;
43 T z;
44
45 public:
46 Triplet() : x(0), y(0), z(0) {}
47 Triplet(T w_) : x(w_), y(w_), z(w_) {}
48 Triplet(T x_, T y_, T z_) : x(x_), y(y_), z(z_) {}
49 Triplet(const Triplet<float>& obj)
50 : x(obj.get_x()), y(obj.get_y()), z(obj.get_z()) {}
51 Triplet(const Triplet<double>& obj)
52 : x(obj.get_x()), y(obj.get_y()), z(obj.get_z()) {}
53 Triplet(const Triplet<int>& obj)
54 : x(obj.get_x()), y(obj.get_y()), z(obj.get_z()) {}
55
56 void set_x(T x_) { x = x_; }
57 void set_y(T y_) { y = y_; }
58 void set_z(T z_) { z = z_; }
59
60 void set(T x_, T y_, T z_) {
61 set_x(x_);
62 set_y(y_);
63 set_z(z_);
64 }
65
66 void set(const Triplet<T>& obj) {
67 set_x(obj.get_x());
68 set_y(obj.get_y());
69 set_z(obj.get_z());

A Source Code 87

70 }
71
72 void set(const geometry_msgs::Point& obj) {
73 set_x(obj.x);
74 set_y(obj.y);
75 set_z(obj.z);
76 }
77
78 T get_x(void) const { return x; }
79 T get_y(void) const { return y; }
80 T get_z(void) const { return z; }
81 void get(float* x, float* y, float* z) {
82 *x = get_x();
83 *y = get_y();
84 *z = get_z();
85 }
86
87 geometry_msgs::Point to_point() {
88 geometry_msgs::Point result;
89 result.x = get_x();
90 result.y = get_y();
91 result.z = get_z();
92 return result;
93 }
94
95 void saturate(T minmax) { saturate(-minmax, minmax); }
96 void saturate(T min, T max) {
97 if (x > max) {
98 set_x(max);
99 } else if (x < min) {

100 set_x(min);
101 }
102 if (y > max) {
103 set_y(max);
104 } else if (y < min) {
105 set_y(min);
106 }
107 if (z > max) {
108 set_z(max);
109 } else if (z < min) {
110 set_z(min);
111 }
112 }
113 void saturate(T mx, T my, T mz) {
114 if (x > mx) {
115 set_x(mx);
116 } else if (x < -mx) {
117 set_x(-mx);
118 }
119 if (y > my) {
120 set_y(my);
121 } else if (y < -my) {
122 set_y(-my);
123 }
124 if (z > mz) {
125 set_z(mz);
126 } else if (z < -mz) {
127 set_z(-mz);
128 }
129 }
130
131 void print() {
132 std::cout << "\n-------------" << std::endl;
133 std::cout << "x: " << x << std::endl;
134 std::cout << "y: " << y << std::endl;
135 std::cout << "z: " << z << std::endl;
136 std::cout << "-------------" << std::endl;
137 }

88 A Source Code

138
139 Triplet& operator+=(const Triplet& obj) {
140 x += (T)obj.x;
141 y += (T)obj.y;
142 z += (T)obj.z;
143 return *this;
144 }
145
146 Triplet operator+(const Triplet& obj) {
147 Triplet<T> result(*this);
148 result += obj;
149 return result;
150 }
151
152 Triplet& operator-=(const Triplet& obj) {
153 x -= (T)obj.x;
154 y -= (T)obj.y;
155 z -= (T)obj.z;
156 return *this;
157 }
158
159 Triplet operator-(const Triplet& obj) {
160 Triplet<T> result(*this);
161 result -= obj;
162 return result;
163 }
164
165 Triplet& operator*=(const Triplet& obj) {
166 x *= (T)obj.x;
167 y *= (T)obj.y;
168 z *= (T)obj.z;
169 return *this;
170 }
171
172 Triplet operator*(const Triplet& obj) {
173 Triplet<T> result(*this);
174 result *= obj;
175 return result;
176 }
177
178 Triplet operator/=(const Triplet& obj) {
179 x /= (T)obj.x;
180 y /= (T)obj.y;
181 z /= (T)obj.z;
182 return *this;
183 }
184
185 Triplet operator/(double obj) {
186 Triplet<T> div(obj);
187 Triplet<T> result(*this);
188 result /= div;
189 return result;
190 }
191 };
192
193 using namespace mavsdk;
194 class UavMonitor {
195 public:
196 UavMonitor() { sem_init(&begin, 0, 0); }
197 UavMonitor(struct param_struct ps) {
198 sem_init(&begin, 0, 0);
199 drone_params = ps;
200 }
201 virtual ~UavMonitor() {}
202 uint64_t dur = 0;
203 ros::Time last_time = ros::Time::now();
204
205 int list_counter = 0;
206 float x_list[LIST_SIZE] = {};

A Source Code 89

207 float y_list[LIST_SIZE] = {};
208 float z_list[LIST_SIZE] = {};
209 Triplet<float> pos_list[LIST_SIZE] = {};
210 ros::Time t_list[LIST_SIZE] = {};
211
212 Triplet<float> position;
213 Triplet<float> velocity;
214 Triplet<float> target;
215
216 Triplet<float> erp; // Position Error
217 Triplet<float> erd; // Derivative Error
218 Triplet<float> eri; // Integrated Error
219
220 Triplet<float> kp; // Position Gain
221 Triplet<float> kd; // Derivative Gain
222 Triplet<float> ki; // Integrated Gain
223
224 Triplet<double> mocap_attitude;
225 Triplet<float> rpy;
226 Triplet<float> uav_rpy;
227
228 Triplet<float> trim;
229 bool last_trim_msg;
230 bool trimmed;
231
232 float baseline = 0.1;
233 float uav_thrust = 0;
234
235 float target_yaw = 0.0;
236 float offset_yaw = 0.0;
237
238 geometry_msgs::TransformStamped transform;
239 geometry_msgs::TransformStamped yaw_transform;
240 ros::ServiceClient manip_client;
241
242 // Health
243 offboard::Health health;
244 // Battery
245 float battery = 0.0;
246 // Params
247 struct param_struct drone_params;
248
249 // Set Functions
250 void set_health(Telemetry::Health);
251 void set_battery(Telemetry::Battery);
252 void set_angle(Telemetry::EulerAngle);
253
254 // This function can be overrided in a derived class to insert a new
255 // controller
256 virtual void set_attitude_targets(Offboard::Attitude* attitude);
257 void calculate_error();
258
259 void set_trim();
260
261 float saturate(double in, double minmax);
262 float saturate_minmax(double in, double min, double max);
263
264 // Get Functions
265 bool get_health(void);
266 float get_battery(void);
267
268 // Other Functions
269 void print();
270
271 int ch = ' ';
272 volatile bool done = false;
273 volatile bool kill = false;
274 sem_t begin;
275 // Callback Functions
276 void kpCb(const geometry_msgs::Point::ConstPtr& msg);
277 void kdCb(const geometry_msgs::Point::ConstPtr& msg);

90 A Source Code

278 void kiCb(const geometry_msgs::Point::ConstPtr& msg);
279 void killCb(const std_msgs::Bool::ConstPtr& msg);
280 void startCb(const std_msgs::Bool::ConstPtr& msg);
281 void trimCb(const std_msgs::Bool::ConstPtr& msg);
282 void baselineCb(const std_msgs::Float32::ConstPtr& msg);
283 void targetCb(const geometry_msgs::Point::ConstPtr& msg);
284 void yawCb(const std_msgs::Float32::ConstPtr& msg);
285 void mocapCb(const geometry_msgs::PoseStamped::ConstPtr& msg);
286
287 // Manipulator Functions
288 bool deploy_manipulator(void);
289 bool retract_manipulator(void);
290 bool command_manipulator(int);
291
292 // Threads
293 static void* offboard_control(void* arg);
294 static void* ros_run(void* args);
295 };
296
297 /* Struct for passing arguments between main function and threads */
298 struct thread_data {
299 UavMonitor* uav;
300 ros::NodeHandle* nh;
301 std::shared_ptr<Offboard> offboard;
302 std::shared_ptr<Action> action;
303 };
304 #endif

Listing 1: uav_monitor.h

A Source Code 91

1 // ROS libraries
2 #include <dynamixel_workbench_msgs/DynamixelCommand.h>
3 #include <geometry_msgs/Point.h>
4 #include <geometry_msgs/PoseStamped.h>
5 #include <geometry_msgs/TransformStamped.h>
6 #include <ros/ros.h>
7 #include <std_msgs/Bool.h>
8 #include <std_msgs/Float32.h>
9 #include <tf/tf.h>

10 #include <tf2_geometry_msgs/tf2_geometry_msgs.h>
11 #include <tf2_ros/buffer.h>
12 #include <tf2_ros/transform_listener.h>
13 // Standard C++ libraries
14 #include <chrono>
15 #include <cmath>
16 #include <future>
17 #include <iostream>
18 #include <queue>
19 #include <thread>
20 // Standard C libraries
21 #include <pthread.h>
22 #include <semaphore.h>
23 #include <string.h>
24 #include <unistd.h>
25 // MAVSDK libraries
26 #include <mavsdk/mavsdk.h>
27 #include <mavsdk/plugins/action/action.h>
28 #include <mavsdk/plugins/info/info.h>
29 #include <mavsdk/plugins/offboard/offboard.h>
30 #include <mavsdk/plugins/telemetry/telemetry.h>
31 // Application libraries
32 #include "mavsdk_helper.h"
33 #include "uav_monitor.h"
34
35 using namespace mavsdk;
36
37 void UavMonitor::kpCb(const geometry_msgs::Point::ConstPtr &msg) {
38 kp.set(msg->x, msg->y, msg->z);
39 }
40
41 void UavMonitor::kdCb(const geometry_msgs::Point::ConstPtr &msg) {
42 kd.set(msg->x, msg->y, msg->z);
43 }
44
45 void UavMonitor::kiCb(const geometry_msgs::Point::ConstPtr &msg) {
46 ki.set(msg->x, msg->y, msg->z);
47 }
48
49 void UavMonitor::targetCb(const geometry_msgs::Point::ConstPtr &msg) {
50 yaw_transform.transform.rotation =
51 tf::createQuaternionMsgFromYaw(-target_yaw * M_PI / 180);
52 target.set(msg->x, msg->y, msg->z);
53 }
54
55 void UavMonitor::yawCb(const std_msgs::Float32::ConstPtr &msg) {
56 target_yaw = msg->data;
57 }
58
59 void UavMonitor::mocapCb(const geometry_msgs::PoseStamped::ConstPtr &msg) {
60 // create quaternion
61 geometry_msgs::PoseStamped mocap;
62 try {
63 tf2::doTransform(*msg, mocap, transform);
64 } catch (tf2::TransformException &ex) {
65 ROS_WARN("%s", ex.what());
66 }
67

92 A Source Code

68 tf::Quaternion q(mocap.pose.orientation.x, mocap.pose.orientation.y,
69 mocap.pose.orientation.z, mocap.pose.orientation.w);
70
71 // get rotation matrix
72 tf::Matrix3x3 m(q);
73 // get r,p,y
74 double r, p, y;
75 m.getRPY(r, p, y);
76 r += r > 0 ? -M_PI : M_PI;
77 if ((ros::Time::now() - last_time) > ros::Duration(0.5)) {
78 // get offset
79 offset_yaw = (float)y * 180 / M_PI - rpy.get_z();
80 last_time = ros::Time::now();
81 }
82 mocap_attitude.set(r, p, y);
83 // Fill the list if it is not yet initialized
84 if (pos_list[0].get_x() == 0.0 && list_counter == 0) {
85 for (int i = 0; i < LIST_SIZE; i++) {
86 t_list[i] = ros::Time::now();
87 }
88 }
89 list_counter++;
90 list_counter %= LIST_SIZE;
91 // std::cout << list_counter << std::endl;
92
93 int prev = (list_counter + 1) % LIST_SIZE;
94 pos_list[list_counter].set(mocap.pose.position.x, mocap.pose.position.y,
95 -mocap.pose.position.z);
96 t_list[list_counter] = msg->header.stamp;
97
98 ros::Duration dt = t_list[list_counter] - t_list[prev];
99

100 velocity.set((pos_list[list_counter] - pos_list[prev]) / dt.toSec());
101
102 calculate_error();
103 }
104
105 void UavMonitor::baselineCb(const std_msgs::Float32::ConstPtr &msg) {
106 // baseline = msg->data;
107 }
108
109 void UavMonitor::killCb(const std_msgs::Bool::ConstPtr &msg) {
110 kill = msg->data;
111 }
112
113 void UavMonitor::startCb(const std_msgs::Bool::ConstPtr &msg) {
114 if (msg->data) {
115 sem_post(&begin);
116 }
117 }
118
119 void UavMonitor::trimCb(const std_msgs::Bool::ConstPtr &msg) {
120 if (!last_trim_msg && msg->data) {
121 set_trim();
122 trimmed = true;
123 }
124 last_trim_msg = msg->data;
125 }
126
127 // Health Functions
128 void UavMonitor::set_health(Telemetry::Health h) {
129 health.gyro = h.is_gyrometer_calibration_ok;
130 health.accel = h.is_accelerometer_calibration_ok;
131 health.mag = h.is_magnetometer_calibration_ok;
132 health.level = h.is_level_calibration_ok;
133
134 health.local = h.is_local_position_ok;
135 health.globe = h.is_global_position_ok;

A Source Code 93

136 health.home = h.is_home_position_ok;
137 }
138
139 bool UavMonitor::get_health() {
140 return health.gyro && health.accel && health.mag && health.level;
141 }
142
143 // Battery Functions
144 void UavMonitor::set_battery(Telemetry::Battery bat) {
145 health.battery = bat.voltage_v;
146 baseline = (9.80665 * 2.2 / 0.3368) * 1 / (health.battery * health.battery);
147 }
148
149 float UavMonitor::get_battery() { return battery; }
150
151 // Attitude Functions
152 void UavMonitor::set_angle(Telemetry::EulerAngle angle) {
153 rpy.set(angle.roll_deg, angle.pitch_deg, angle.yaw_deg);
154 }
155
156 bool UavMonitor::command_manipulator(int value) {
157 dynamixel_workbench_msgs::DynamixelCommand srv;
158
159 srv.request.command = "";
160 srv.request.id = 4;
161 srv.request.addr_name = "Goal_position";
162 srv.request.value = value;
163
164 return manip_client.call(srv);
165 }
166
167 bool UavMonitor::deploy_manipulator() {
168 dynamixel_workbench_msgs::DynamixelCommand srv;
169 return command_manipulator(MANIPULATOR_MAXIMUM);
170 }
171
172 bool UavMonitor::retract_manipulator() {
173 dynamixel_workbench_msgs::DynamixelCommand srv;
174 return command_manipulator(MANIPULATOR_MINIMUM);
175 }
176
177 // Other Functions
178 void *UavMonitor::offboard_control(void *arg) {
179 std::cout << "Starting control thread ..." << std::endl;
180 const std::string offb_mode = "ATTITUDE";
181
182 struct thread_data *args = (struct thread_data *)arg;
183
184 UavMonitor *m = args->uav;
185 std::shared_ptr<mavsdk::Offboard> offboard = args->offboard;
186 std::shared_ptr<mavsdk::Action> action = args->action;
187
188 ros::Rate rate(100);
189
190 Offboard::Attitude attitude;
191 attitude.roll_deg = 0.0f;
192 attitude.pitch_deg = -0.0f;
193 attitude.yaw_deg = 0.0f;
194 attitude.thrust_value = 0.1f;
195
196 if (sem_wait(&(m->begin)) == -1) {
197 std::cout << "Thread Sync Error. Aborting ... " << std::endl;
198 m->done = true;
199 pthread_exit(NULL);
200 }
201
202 Action::Result arm_result = action->arm();
203 action_error_exit(arm_result, "Arming failed");
204 std::cout << "Armed" << std::endl;
205

94 A Source Code

206 offboard->set_attitude(attitude);
207 Offboard::Result offboard_result = offboard->start();
208 offboard_error_exit(offboard_result, "Offboard start failed");
209 offboard_log(offb_mode, "Offboard started");
210 std::cout << "Offboard" << std::endl;
211
212 ros::Time start = ros::Time::now();
213 while (!m->kill) {
214 // Control Loop Timer
215 ros::Time end = ros::Time::now();
216 ros::Duration t = end - start;
217 start = end;
218 // Control Loop
219 m->set_attitude_targets(&attitude);
220 offboard->set_attitude(attitude);
221 rate.sleep();
222 }
223
224
225 std::cout << "Zeroing control inputs ..." << std::endl;
226 attitude.thrust_value = 0.0f;
227 attitude.roll_deg = 0.0f;
228 attitude.pitch_deg = 0.0f;
229 attitude.yaw_deg = 0.0f;
230 offboard->set_attitude(attitude);
231
232 sleep(1);
233 std::cout << "Sending kill command ..." << std::endl;
234
235 const Action::Result kill_result = action->kill();
236
237 m->done = true;
238 pthread_exit(NULL);
239 }
240
241 void UavMonitor::set_attitude_targets(Offboard::Attitude *attitude) {
242 Triplet<float> attitude_target(kp * erp + kd * erd + ki * eri);
243 attitude_target *= Triplet<float>(-1, 1, 1);
244 attitude_target.saturate(8, 8, 0.3);
245 attitude_target.get(&(attitude->pitch_deg), &(attitude->roll_deg),
246 &(attitude->thrust_value));
247 attitude->thrust_value += baseline;
248 attitude->pitch_deg -= trim.get_x();
249 attitude->roll_deg += trim.get_y();
250 attitude->yaw_deg = target_yaw - offset_yaw;
251
252 uav_thrust = attitude->thrust_value;
253 uav_rpy.set_x(attitude->roll_deg);
254 uav_rpy.set_y(attitude->pitch_deg);
255 uav_rpy.set_z(attitude->yaw_deg);
256 }
257
258 float UavMonitor::saturate(double in, double minmax) {
259 return saturate_minmax(in, -minmax, minmax);
260 }
261
262 float UavMonitor::saturate_minmax(double in, double min, double max) {
263 if (in > max) {
264 return (float)max;
265 } else if (in < min) {
266 return (float)min;
267 }
268
269 return (float)in;
270 }
271
272 void UavMonitor::calculate_error() {
273 Triplet<float> offset;
274 if (drone_params.mode == 1) {

A Source Code 95

275 offset.set_z(sin(uav_rpy.get_x() * M_PI / 180) * drone_params.length);
276 }
277 Triplet<float> tmp(target + offset - pos_list[list_counter]);
278 geometry_msgs::Point error(tmp.to_point());
279
280 geometry_msgs::Point error_transformed;
281 tf2::doTransform(error, error_transformed, yaw_transform);
282
283 tmp.set(Triplet<float>(-1) * velocity);
284 geometry_msgs::Point derror(tmp.to_point());
285
286 geometry_msgs::Point derror_transformed;
287 tf2::doTransform(derror, derror_transformed, yaw_transform);
288
289 erp.set(error_transformed);
290 erd.set(derror_transformed);
291
292 int sval;
293 sem_getvalue(&begin, &sval);
294 if (sval > 0) {
295 eri += (erp / 100);
296 if (trimmed) {
297 eri.saturate(1, 1, 1);
298 } else {
299 eri.saturate(6, 6, 6);
300 }
301 } else {
302 eri.set(erp);
303 eri /= Triplet<float>(100, 100, 100);
304 }
305 }
306
307 void UavMonitor::set_trim() {
308 trim.set(eri);
309 trim.set_z(0);
310 eri.set_x(0);
311 eri.set_y(0);
312 }
313
314 void *UavMonitor::ros_run(void *arg) {
315 std::cout << "Starting Callbacks ..." << std::endl;
316 struct thread_data *args = (struct thread_data *)arg;
317
318 UavMonitor *uav = args->uav;
319 ros::NodeHandle *nh = args->nh;
320
321 ros::Subscriber kill_switch =
322 nh->subscribe<std_msgs::Bool>("kill", 10, &UavMonitor::killCb, uav);
323 ros::Subscriber start_sub =
324 nh->subscribe<std_msgs::Bool>("start", 10, &UavMonitor::startCb, uav);
325 ros::Subscriber trim_sub =
326 nh->subscribe<std_msgs::Bool>("trim", 10, &UavMonitor::trimCb, uav);
327 ros::Subscriber kp_sub =
328 nh->subscribe<geometry_msgs::Point>("kp", 10, &UavMonitor::kpCb, uav);
329 ros::Subscriber kd_sub =
330 nh->subscribe<geometry_msgs::Point>("kd", 10, &UavMonitor::kdCb, uav);
331 ros::Subscriber ki_sub =
332 nh->subscribe<geometry_msgs::Point>("ki", 10, &UavMonitor::kiCb, uav);
333
334 ros::Subscriber baseline_sub = nh->subscribe<std_msgs::Float32>(
335 "baseline", 10, &UavMonitor::baselineCb, uav);
336 ros::Subscriber mocap_sub = nh->subscribe<geometry_msgs::PoseStamped>(
337 "mocap", 10, &UavMonitor::mocapCb, uav);
338 ros::Subscriber target_sub = nh->subscribe<geometry_msgs::Point>(
339 "target", 10, &UavMonitor::targetCb, uav);
340 ros::Subscriber yw_sub = nh->subscribe<std_msgs::Float32>(
341 "yaw_target", 10, &UavMonitor::yawCb, uav);
342
343 uav->manip_client =

96 A Source Code

344 nh->serviceClient<dynamixel_workbench_msgs::DynamixelCommand>(
345 "/dynamixel_workbench/dynamixel_command");
346 ros::spin();
347
348 pthread_exit(NULL);
349 }

Listing 2: uav_monitor.cpp

A Source Code 97

1 #ifndef MAVSDK_HELPER_H
2 #define MAVSDK_HELPER_H
3
4 #include <chrono>
5 #include <cmath>
6 #include <future>
7 #include <iostream>
8 #include <thread>
9

10 #include <mavsdk/mavsdk.h>
11 #include <mavsdk/plugins/action/action.h>
12 #include <mavsdk/plugins/info/info.h>
13 #include <mavsdk/plugins/offboard/offboard.h>
14 #include <mavsdk/plugins/telemetry/telemetry.h>
15
16 using namespace mavsdk;
17
18 #define ERROR_CONSOLE_TEXT "\033[31m" // Turn text on console red
19 #define TELEMETRY_CONSOLE_TEXT "\033[34m" // Turn text on console blue
20 #define NORMAL_CONSOLE_TEXT "\033[0m" // Restore normal console colour
21 void action_error_exit(Action::Result result, const std::string& message);
22 void offboard_error_exit(Offboard::Result result, const std::string& message);
23 void offboard_log(const std::string& offb_mode, const std::string msg);
24 void connection_error_exit(ConnectionResult result, const std::string& message);
25 void usage(std::string bin_name);
26
27 void wait_until_discover(Mavsdk& dc);
28
29 #endif

Listing 3: mavsdk_helper.h

98 A Source Code

1 #include <chrono>
2 #include <cmath>
3 #include <future>
4 #include <iostream>
5 #include <thread>
6
7 #include <mavsdk/mavsdk.h>
8 #include <mavsdk/plugins/action/action.h>
9 #include <mavsdk/plugins/offboard/offboard.h>

10 #include <mavsdk/plugins/telemetry/telemetry.h>
11
12 using namespace mavsdk;
13 using std::chrono::milliseconds;
14 using std::chrono::seconds;
15 using std::this_thread::sleep_for;
16
17 #define ERROR_CONSOLE_TEXT "\033[31m" // Turn text on console red
18 #define TELEMETRY_CONSOLE_TEXT "\033[34m" // Turn text on console blue
19 #define NORMAL_CONSOLE_TEXT "\033[0m" // Restore normal console colour
20
21 // Handles Action's result
22 inline void action_error_exit(Action::Result result,
23 const std::string& message) {
24 if (result != Action::Result::Success) {
25 std::cerr << ERROR_CONSOLE_TEXT << message << result << NORMAL_CONSOLE_TEXT
26 << std::endl;
27 exit(EXIT_FAILURE);
28 }
29 }
30
31 // Handles Offboard's result
32 inline void offboard_error_exit(Offboard::Result result,
33 const std::string& message) {
34 if (result != Offboard::Result::Success) {
35 std::cerr << ERROR_CONSOLE_TEXT << message << result << NORMAL_CONSOLE_TEXT
36 << std::endl;
37 exit(EXIT_FAILURE);
38 }
39 }
40
41 // Handles connection result
42 inline void connection_error_exit(ConnectionResult result,
43 const std::string& message) {
44 if (result != ConnectionResult::Success) {
45 std::cerr << ERROR_CONSOLE_TEXT << message << result << NORMAL_CONSOLE_TEXT
46 << std::endl;
47 exit(EXIT_FAILURE);
48 }
49 }
50
51 // Logs during Offboard control
52 inline void offboard_log(const std::string& offb_mode, const std::string msg) {
53 std::cout << "[" << offb_mode << "] " << msg << std::endl;
54 }
55
56 /**
57 * Does Offboard control using NED co-ordinates.
58 *
59 * returns true if everything went well in Offboard control, exits with a log
60 * otherwise.
61 */
62 bool offb_ctrl_ned(std::shared_ptr<mavsdk::Offboard> offboard) {
63 const std::string offb_mode = "NED";
64 // Send it once before starting offboard, otherwise it will be rejected.
65 const Offboard::VelocityNedYaw stay{};
66 offboard->set_velocity_ned(stay);
67
68 Offboard::Result offboard_result = offboard->start();
69 offboard_error_exit(offboard_result, "Offboard start failed");
70 offboard_log(offb_mode, "Offboard started");

A Source Code 99

71
72 offboard_log(offb_mode, "Turn to face East");
73
74 Offboard::VelocityNedYaw turn_east{};
75 turn_east.yaw_deg = 90.0f;
76 offboard->set_velocity_ned(turn_east);
77 sleep_for(seconds(1)); // Let yaw settle.
78
79 {
80 const float step_size = 0.01f;
81 const float one_cycle = 2.0f * (float)M_PI;
82 const unsigned steps = 2 * unsigned(one_cycle / step_size);
83
84 offboard_log(offb_mode, "Go North and back South");
85 for (unsigned i = 0; i < steps; ++i) {
86 float vx = 5.0f * sinf(i * step_size);
87 Offboard::VelocityNedYaw north_and_back_south{};
88 north_and_back_south.north_m_s = vx;
89 north_and_back_south.yaw_deg = 90.0f;
90 offboard->set_velocity_ned(north_and_back_south);
91 sleep_for(milliseconds(10));
92 }
93 }
94
95 offboard_log(offb_mode, "Turn to face West");
96 Offboard::VelocityNedYaw turn_west{};
97 turn_west.yaw_deg = 270.0f;
98 offboard->set_velocity_ned(turn_west);
99 sleep_for(seconds(2));

100
101 offboard_log(offb_mode, "Go up 2 m/s, turn to face South");
102 Offboard::VelocityNedYaw up_and_south{};
103 up_and_south.down_m_s = -2.0f;
104 up_and_south.yaw_deg = 180.0f;
105 offboard->set_velocity_ned(up_and_south);
106 sleep_for(seconds(4));
107
108 offboard_log(offb_mode, "Go down 1 m/s, turn to face North");
109 Offboard::VelocityNedYaw down_and_north{};
110 up_and_south.down_m_s = 1.0f;
111 offboard->set_velocity_ned(down_and_north);
112 sleep_for(seconds(4));
113
114 // Now, stop offboard mode.
115 offboard_result = offboard->stop();
116 offboard_error_exit(offboard_result, "Offboard stop failed: ");
117 offboard_log(offb_mode, "Offboard stopped");
118
119 return true;
120 }
121
122 /**
123 * Does Offboard control using body co-ordinates.
124 *
125 * returns true if everything went well in Offboard control, exits with a log
126 * otherwise.
127 */
128 bool offb_ctrl_body(std::shared_ptr<mavsdk::Offboard> offboard) {
129 const std::string offb_mode = "BODY";
130
131 // Send it once before starting offboard, otherwise it will be rejected.
132 Offboard::VelocityBodyYawspeed stay{};
133 offboard->set_velocity_body(stay);
134
135 Offboard::Result offboard_result = offboard->start();
136 offboard_error_exit(offboard_result, "Offboard start failed: ");
137 offboard_log(offb_mode, "Offboard started");
138

100 A Source Code

139 offboard_log(offb_mode, "Turn clock-wise and climb");
140 Offboard::VelocityBodyYawspeed cc_and_climb{};
141 cc_and_climb.down_m_s = -1.0f;
142 cc_and_climb.yawspeed_deg_s = 60.0f;
143 offboard->set_velocity_body(cc_and_climb);
144 sleep_for(seconds(5));
145
146 offboard_log(offb_mode, "Turn back anti-clockwise");
147 Offboard::VelocityBodyYawspeed ccw{};
148 ccw.down_m_s = -1.0f;
149 ccw.yawspeed_deg_s = -60.0f;
150 offboard->set_velocity_body(ccw);
151 sleep_for(seconds(5));
152
153 offboard_log(offb_mode, "Wait for a bit");
154 offboard->set_velocity_body(stay);
155 sleep_for(seconds(2));
156
157 offboard_log(offb_mode, "Fly a circle");
158 Offboard::VelocityBodyYawspeed circle{};
159 circle.forward_m_s = 5.0f;
160 circle.yawspeed_deg_s = 30.0f;
161 offboard->set_velocity_body(circle);
162 sleep_for(seconds(15));
163
164 offboard_log(offb_mode, "Wait for a bit");
165 offboard->set_velocity_body(stay);
166 sleep_for(seconds(5));
167
168 offboard_log(offb_mode, "Fly a circle sideways");
169 circle.right_m_s = -5.0f;
170 circle.yawspeed_deg_s = 30.0f;
171 offboard->set_velocity_body(circle);
172 sleep_for(seconds(15));
173
174 offboard_log(offb_mode, "Wait for a bit");
175 offboard->set_velocity_body(stay);
176 sleep_for(seconds(8));
177
178 offboard_result = offboard->stop();
179 offboard_error_exit(offboard_result, "Offboard stop failed: ");
180 offboard_log(offb_mode, "Offboard stopped");
181
182 return true;
183 }
184
185 /**
186 * Does Offboard control using attitude commands.
187 *
188 * returns true if everything went well in Offboard control, exits with a log
189 * otherwise.
190 */
191 bool offb_ctrl_attitude(std::shared_ptr<mavsdk::Offboard> offboard) {
192 const std::string offb_mode = "ATTITUDE";
193
194 // Send it once before starting offboard, otherwise it will be rejected.
195 Offboard::Attitude roll{};
196 roll.roll_deg = 30.0f;
197 roll.thrust_value = 0.6f;
198 offboard->set_attitude(roll);
199
200 Offboard::Result offboard_result = offboard->start();
201 offboard_error_exit(offboard_result, "Offboard start failed");
202 offboard_log(offb_mode, "Offboard started");
203
204 offboard_log(offb_mode, "ROLL 30");
205 offboard->set_attitude(roll);
206 sleep_for(seconds(2)); // rolling
207

A Source Code 101

208 offboard_log(offb_mode, "ROLL -30");
209 roll.roll_deg = -30.0f;
210 offboard->set_attitude(roll);
211 sleep_for(seconds(2)); // Let yaw settle.
212
213 offboard_log(offb_mode, "ROLL 0");
214 roll.roll_deg = 0.0f;
215 offboard->set_attitude(roll);
216 sleep_for(seconds(2)); // Let yaw settle.
217
218 // Now, stop offboard mode.
219 offboard_result = offboard->stop();
220 offboard_error_exit(offboard_result, "Offboard stop failed: ");
221 offboard_log(offb_mode, "Offboard stopped");
222
223 return true;
224 }
225
226 void wait_until_discover(Mavsdk& dc) {
227 std::cout << "Waiting to discover system..." << std::endl;
228 std::promise<void> discover_promise;
229 auto discover_future = discover_promise.get_future();
230
231 dc.register_on_discover([&discover_promise](uint64_t uuid) {
232 std::cout << "Discovered system with UUID: " << uuid << std::endl;
233 discover_promise.set_value();
234 });
235
236 discover_future.wait();
237 }
238
239 void usage(std::string bin_name) {
240 std::cout << NORMAL_CONSOLE_TEXT << "Usage : " << bin_name
241 << " <connection_url>" << std::endl
242 << "Connection URL format should be :" << std::endl
243 << " For TCP : tcp://[server_host][:server_port]" << std::endl
244 << " For UDP : udp://[bind_host][:bind_port]" << std::endl
245 << " For Serial : serial:///path/to/serial/dev[:baudrate]"
246 << std::endl
247 << "For example, to connect to the simulator use URL: udp://:14540"
248 << std::endl;
249 }
250
251 Telemetry::LandedStateCallback landed_state_callback(
252 std::shared_ptr<Telemetry>& telemetry, std::promise<void>& landed_promise) {
253 return [&landed_promise, &telemetry](Telemetry::LandedState landed) {
254 switch (landed) {
255 case Telemetry::LandedState::OnGround:
256 std::cout << "On ground" << std::endl;
257 break;
258 case Telemetry::LandedState::TakingOff:
259 std::cout << "Taking off..." << std::endl;
260 break;
261 case Telemetry::LandedState::Landing:
262 std::cout << "Landing..." << std::endl;
263 break;
264 case Telemetry::LandedState::InAir:
265 std::cout << "Taking off has finished." << std::endl;
266 telemetry->subscribe_landed_state(nullptr);
267 landed_promise.set_value();
268 break;
269 case Telemetry::LandedState::Unknown:
270 std::cout << "Unknown landed state." << std::endl;
271 break;
272 }
273 };
274 }
275
276 int mavmain(int argc, char** argv) {

102 A Source Code

277 Mavsdk dc;
278 std::string connection_url;
279 ConnectionResult connection_result;
280
281 if (argc == 2) {
282 connection_url = argv[1];
283 connection_result = dc.add_any_connection(connection_url);
284 } else {
285 usage(argv[0]);
286 return 1;
287 }
288
289 if (connection_result != ConnectionResult::Success) {
290 std::cout << ERROR_CONSOLE_TEXT
291 << "Connection failed: " << connection_result
292 << NORMAL_CONSOLE_TEXT << std::endl;
293 return 1;
294 }
295
296 // Wait for the system to connect via heartbeat
297 wait_until_discover(dc);
298
299 // System got discovered.
300 System& system = dc.system();
301 auto action = std::make_shared<Action>(system);
302 auto offboard = std::make_shared<Offboard>(system);
303 auto telemetry = std::make_shared<Telemetry>(system);
304
305 while (!telemetry->health_all_ok()) {
306 std::cout << "Waiting for system to be ready" << std::endl;
307 sleep_for(seconds(1));
308 }
309 std::cout << "System is ready" << std::endl;
310
311 std::promise<void> in_air_promise;
312 auto in_air_future = in_air_promise.get_future();
313
314 Action::Result arm_result = action->arm();
315 action_error_exit(arm_result, "Arming failed");
316 std::cout << "Armed" << std::endl;
317
318 Action::Result takeoff_result = action->takeoff();
319 action_error_exit(takeoff_result, "Takeoff failed");
320
321 telemetry->subscribe_landed_state(
322 landed_state_callback(telemetry, in_air_promise));
323 in_air_future.wait();
324
325 // using attitude control
326 bool ret = offb_ctrl_attitude(offboard);
327 if (ret == false) {
328 return EXIT_FAILURE;
329 }
330
331 // using local NED co-ordinates
332 ret = offb_ctrl_ned(offboard);
333 if (ret == false) {
334 return EXIT_FAILURE;
335 }
336
337 // using body co-ordinates
338 ret = offb_ctrl_body(offboard);
339 if (ret == false) {
340 return EXIT_FAILURE;
341 }
342
343 const Action::Result land_result = action->land();
344 action_error_exit(land_result, "Landing failed");
345

A Source Code 103

346 // Check if vehicle is still in air
347 while (telemetry->in_air()) {
348 std::cout << "Vehicle is landing..." << std::endl;
349 sleep_for(seconds(1));
350 }
351 std::cout << "Landed!" << std::endl;
352
353 // We are relying on auto-disarming but let's keep watching the telemetry for
354 // a bit longer.
355 sleep_for(seconds(3));
356 std::cout << "Finished..." << std::endl;
357
358 return EXIT_SUCCESS;
359 }

Listing 4: mavsdk_helper.cpp

104 A Source Code

1 #include <geometry_msgs/Point.h>
2 #include <geometry_msgs/PointStamped.h>
3 #include <offboard/ActuatorArray.h>
4 #include <offboard/Health.h>
5 #include <ros/ros.h>
6 #include <std_msgs/Bool.h>
7 #include <std_msgs/Float32.h>
8 #include <std_msgs/Header.h>
9 #include <tf/tf.h>

10 #include <tf2_geometry_msgs/tf2_geometry_msgs.h>
11 #include <tf2_ros/buffer.h>
12 #include <tf2_ros/transform_listener.h>
13
14 #include <chrono>
15 #include <cmath>
16 #include <future>
17 #include <iostream>
18 #include <thread>
19
20 #include <pthread.h>
21 #include <string.h>
22 #include <unistd.h>
23
24 #include <mavsdk/mavsdk.h>
25 #include <mavsdk/plugins/action/action.h>
26 #include <mavsdk/plugins/info/info.h>
27 #include <mavsdk/plugins/offboard/offboard.h>
28 #include <mavsdk/plugins/telemetry/telemetry.h>
29 #include "mavsdk_helper.h"
30 #include "uav_monitor.h"
31
32 using namespace mavsdk;
33 using std::chrono::milliseconds;
34 using std::chrono::seconds;
35 using std::this_thread::sleep_for;
36
37 int main(int argc, char **argv) {
38 /* Start ROS */
39 ros::init(argc, argv, "interface");
40 ros::NodeHandle private_node_handle("~");
41 ros::NodeHandle nh;
42
43 Mavsdk dc;
44 std::string connection_url;
45 ConnectionResult connection_result;
46 /* Get connection url */
47 if (private_node_handle.getParam("url", connection_url)) {
48 std::cout << "Found param" << std::endl;
49 connection_result = dc.add_any_connection(connection_url);
50 } else {
51 usage(argv[0]);
52 return 1;
53 }
54
55 struct param_struct drone_params;
56 if (private_node_handle.getParam("mode", drone_params.mode)) {
57 std::cout << "Mode Found " << std::endl;
58 } else {
59 drone_params.mode = 0;
60 }
61
62 if (private_node_handle.getParam("mass", drone_params.mass)) {
63 std::cout << "Mass Found" << std::endl;
64 } else {
65 drone_params.mass = 0;
66 }
67
68 if (private_node_handle.getParam("length", drone_params.length)) {
69 std::cout << "Length Found" << std::endl;

A Source Code 105

70 } else {
71 drone_params.length = 0;
72 }
73
74 /* Attempt connection */
75 if (connection_result != ConnectionResult::Success) {
76 std::cout << "Connection Failed: " << connection_result << std::endl;
77 return 1;
78 }
79
80 wait_until_discover(dc);
81 System &system = dc.system();
82
83 /* Once connected initialise plugins */
84 auto action = std::make_shared<Action>(system);
85 auto info = std::make_shared<Info>(system);
86 auto offboard = std::make_shared<Offboard>(system);
87 auto telemetry = std::make_shared<Telemetry>(system);
88
89 /* Create ROS publishers */
90 ros::Publisher health_pub = nh.advertise<offboard::Health>("health", 10);
91 ros::Publisher att_pub =
92 nh.advertise<geometry_msgs::PointStamped>("attitude", 10);
93 ros::Publisher matt_pub =
94 nh.advertise<geometry_msgs::PointStamped>("mocap_att", 10);
95 ros::Publisher err_pub = nh.advertise<geometry_msgs::PointStamped>("err", 10);
96 ros::Publisher erd_pub = nh.advertise<geometry_msgs::PointStamped>("erd", 10);
97 ros::Publisher eri_pub = nh.advertise<geometry_msgs::PointStamped>("eri", 10);
98 ros::Publisher in_pub =
99 nh.advertise<geometry_msgs::PointStamped>("att_in", 10);

100 ros::Publisher thrust_pub = nh.advertise<std_msgs::Float32>("thrust", 10);
101 ros::Rate rate(100.0);
102
103 /* Create UavMonitor to handle controllers */
104 UavMonitor uav(drone_params);
105 std::cout << "UAV created with:\n\tMass:\t" << uav.drone_params.mass
106 << std::endl;
107 std::cout << "\tLength:\t" << uav.drone_params.length << std::endl;
108 /* Start Battery Subscriber */
109 Telemetry::Result set_rate_result = telemetry->set_rate_battery(10.0);
110 if (set_rate_result != Telemetry::Result::Success) {
111 std::cout << "Setting batt rate failed:" << set_rate_result << std::endl;
112 }
113
114 /* Start Attitude Subscriber */
115 set_rate_result = telemetry->set_rate_attitude(100.0);
116 if (set_rate_result != Telemetry::Result::Success) {
117 std::cout << "Setting att rate failed:" << set_rate_result << std::endl;
118 }
119
120 telemetry->subscribe_health(
121 [&uav](Telemetry::Health health) { uav.set_health(health); });
122
123 telemetry->subscribe_battery(
124 [&uav](Telemetry::Battery battery) { uav.set_battery(battery); });
125
126 telemetry->subscribe_attitude_euler(
127 [&uav](Telemetry::EulerAngle angle) { uav.set_angle(angle); });
128
129 /* struct to pass objects to threads */
130 struct thread_data thread_args;
131 thread_args.uav = &uav;
132 thread_args.offboard = offboard;
133 thread_args.action = action;
134 thread_args.nh = &nh;
135
136 /* structure for measuring loop time */
137

106 A Source Code

138 /* Find transformation*/
139 tf2_ros::Buffer tBuffer;
140 tf2_ros::TransformListener tfListener(tBuffer);
141 uav.transform = tBuffer.lookupTransform("HexyBoi", "base_link", ros::Time(0),
142 ros::Duration(1.0));
143
144 /* start listening for msgs */
145 pthread_t offboard_thread, callback_thread;
146 pthread_create(&callback_thread, NULL, &UavMonitor::ros_run,
147 (void *)&thread_args);
148
149 /* go into offboard control */
150 pthread_create(&offboard_thread, NULL, &UavMonitor::offboard_control,
151 (void *)&thread_args);
152
153 std::cout << "Starting publishers ..." << std::endl;
154
155 /*Create ROS msgs*/
156 offboard::Health health;
157 geometry_msgs::PointStamped attitude;
158 geometry_msgs::PointStamped mocap_att;
159 geometry_msgs::PointStamped err;
160 geometry_msgs::PointStamped erd;
161 geometry_msgs::PointStamped eri;
162 geometry_msgs::PointStamped in;
163
164 std_msgs::Float32 thrust;
165
166 std_msgs::Header header;
167 header.stamp = ros::Time::now();
168
169 while (!uav.done) {
170 ros::Time start = ros::Time::now();
171
172 health = uav.health;
173
174 header.stamp = ros::Time::now();
175 attitude.point = uav.rpy.to_point();
176 attitude.header = header;
177 mocap_att.point = uav.mocap_attitude.to_point();
178 mocap_att.header = header;
179 err.point = uav.erp.to_point();
180 err.header = header;
181 erd.point = uav.erd.to_point();
182 erd.header = header;
183 eri.point = uav.eri.to_point();
184 eri.header = header;
185 in.point = uav.uav_rpy.to_point();
186 in.header = header;
187
188 thrust.data = uav.uav_thrust;
189
190 att_pub.publish(attitude);
191 matt_pub.publish(mocap_att);
192 health_pub.publish(health);
193 err_pub.publish(err);
194 erd_pub.publish(erd);
195 eri_pub.publish(eri);
196 in_pub.publish(in);
197 thrust_pub.publish(thrust);
198 ros::Time end = ros::Time::now();
199 rate.sleep();
200 }
201 pthread_join(offboard_thread, NULL);
202
203 std::cout << "Shutting down ROS ..." << std::endl;
204
205 ros::shutdown();
206
207 pthread_join(callback_thread, NULL);

A Source Code 107

208
209 std::cout << "Ending the program ..." << std::endl;
210
211 return 0;
212 }

Listing 5: ros_interface.cpp

108 A Source Code

1 #!/usr/bin/env python
2 import rospy
3 import std_msgs.msg as smsg
4 import geometry_msgs.msg as geo
5 import mavros_msgs.msg as mav
6 import offboard.msg as test
7
8 import os
9 import sys

10 import termios
11 import fcntl
12 import atexit
13 import time
14
15 old_settings=None
16 done = False
17
18 def init_anykey():
19 global old_settings
20 old_settings = termios.tcgetattr(sys.stdin)
21 new_settings = termios.tcgetattr(sys.stdin)
22 new_settings[3] = new_settings[3] & ~(termios.ECHO | termios.ICANON) # lflags
23 new_settings[6][termios.VMIN] = 0 # cc
24 new_settings[6][termios.VTIME] = 0 # cc
25 termios.tcsetattr(sys.stdin, termios.TCSADRAIN, new_settings)
26
27 @atexit.register
28 def term_anykey():
29 global old_settings
30 if old_settings:
31 termios.tcsetattr(sys.stdin, termios.TCSADRAIN, old_settings)
32
33 def anykey():
34 ch_set = []
35 ch = os.read(sys.stdin.fileno(), 1)
36 while ch != None and len(ch) > 0:
37 ch_set.append(ord(ch[0]))
38 ch = os.read(sys.stdin.fileno(), 1)
39 return ch_set;
40
41 def intro():
42 print("==")
43 print("Command Line Control Interface")
44 print("==")
45 print("Press Q to kill")
46 print("Press A to abort this program")
47 print("Press E/D to change target yaw by +/- 10")
48 print("Press T/G to change target height by +/- 0.25")
49 print("Press R/F to change baseline thrust by +/- 0.01")
50 print("Press Y/H to change Kpxy by +/- 0.1")
51 print("Press U/J to change Kdxy by +/- 0.1")
52 print("Press I/K to change Kpz by +/- 0.01")
53 print("Press O/L to change Kdz by +/- 0.01")
54
55 def printBool(boolean):
56 if boolean:
57 return "OK"
58 else:
59 return "FAIL"
60
61
62 class Status:
63 def __init__(self):
64 self.health = test.Health()
65 self.kp = geo.Point()
66 self.kd = geo.Point()
67 self.ki = geo.Point()
68 self.zz = geo.Point()
69
70 self.bl = smsg.Float32()

A Source Code 109

71 self.kl = smsg.Bool()
72 self.st = smsg.Bool()
73 self.st.data = False
74 self.pos = geo.Point()
75 self.vel = geo.Point()
76 self.err = geo.Point()
77 self.erd = geo.Point()
78 self.eri = geo.Point()
79 self.yaw = smsg.Float32()
80 self.attitude = geo.Point()
81 self.mocap_att = geo.Point()
82 self.thrust = 0.0
83
84 self.kp.x = 8.0
85 self.kp.y = 8.0
86 self.kp.z = 0.05
87
88 self.kd.x = 10.0
89 self.kd.y = 10.0
90 self.kd.z = 0.1
91
92 self.ki.x = 1.0
93 self.ki.y = 1.0
94 self.ki.z = 0.02
95 self.bl.data = 0.14
96 self.yaw.data = 0.0
97
98 self.kp_pub = rospy.Publisher('kp', geo.Point, queue_size=1)
99 self.kd_pub = rospy.Publisher('kd', geo.Point, queue_size=1)

100 self.ki_pub = rospy.Publisher('ki', geo.Point, queue_size=1)
101 self.bl_pub = rospy.Publisher('baseline', smsg.Float32, queue_size=1)
102 self.zz_pub = rospy.Publisher('target', geo.Point, queue_size=1)
103 self.kl_pub = rospy.Publisher('kill', smsg.Bool, queue_size=1)
104 self.st_pub = rospy.Publisher('start', smsg.Bool, queue_size=1)
105 self.yw_pub = rospy.Publisher('yaw_target', smsg.Float32, queue_size=1)
106
107 def healthCb(self, msg):
108 self.health = msg
109
110 def attCb(self, msg):
111 self.attitude = msg.point
112
113 def mattCb(self, msg):
114 self.mocap_att = msg.point
115
116 def posCb(self, msg):
117 self.pos= msg.point
118
119 def velCb(self, msg):
120 self.vel = msg.point
121
122 def errCb(self, msg):
123 self.err = msg.point
124
125 def erdCb(self, msg):
126 self.erd = msg.point
127
128 def eriCb(self, msg):
129 self.eri = msg.point
130
131 def thrustCb(self, msg):
132 self.thrust = msg.data
133
134 def baselineCb(self, msg):
135 self.bl = msg
136
137 def targetCb(self, msg):
138 self.zz = msg
139
140 def killCb(self, msg):

110 A Source Code

141 self.kl = msg
142
143 def startCb(self, msg):
144 self.st = msg
145
146 def yawCb(self, msg):
147 self.yaw = msg
148
149 def publish(self):
150 self.kp_pub.publish(self.kp)
151 self.kd_pub.publish(self.kd)
152 self.ki_pub.publish(self.ki)
153 self.bl_pub.publish(self.bl)
154 self.zz_pub.publish(self.zz)
155 self.kl_pub.publish(self.kl)
156 self.st_pub.publish(self.st)
157 self.yw_pub.publish(self.yaw)
158
159
160 def print_status(self, first=False):
161 if not first:
162 print("\r\033[26A")
163 else:
164 pass
165 zzx = round(self.zz.x,5)
166 zzy = round(self.zz.y,5)
167 zzz = round(self.zz.z,5)
168 kpx = round(self.kp.x,5)
169 kpy = round(self.kp.y,5)
170 kpz = round(self.kp.z,5)
171 kdx = round(self.kd.x,5)
172 kdy = round(self.kd.y,5)
173 kdz = round(self.kd.z,5)
174 kix = round(self.ki.x,5)
175 kiy = round(self.ki.y,5)
176 kiz = round(self.ki.z,5)
177 bl = round(self.bl.data, 5)
178
179
180 px = round(self.pos.x, 5)
181 py = round(self.pos.y, 5)
182 pz = round(self.pos.z, 5)
183 vx = round(self.vel.x, 5)
184 vy = round(self.vel.y, 5)
185 vz = round(self.vel.z, 5)
186 ex = round(self.err.x, 5)
187 ey = round(self.err.y, 5)
188 ez = round(self.err.z, 5)
189 exd = round(self.erd.x, 5)
190 eyd = round(self.erd.y, 5)
191 ezd = round(self.erd.z, 5)
192 exi = round(self.eri.x, 5)
193 eyi = round(self.eri.y, 5)
194 ezi = round(self.eri.z, 5)
195
196 t = round(self.thrust, 5)
197
198 pr = round(self.attitude.x, 5)
199 pp = round(self.attitude.y, 5)
200 pw = round(self.attitude.z, 5)
201
202 mr = round(self.mocap_att.x, 5)
203 mp = round(self.mocap_att.y, 5)
204 my = round(self.mocap_att.z, 5)
205
206 health = self.health;
207 print("--")
208 print("Health".ljust(55))

A Source Code 111

209 print("--")
210 print((" Gyro : "+printBool(health.gyro)).ljust(15) + (" Local :

"+printBool(health.local)).ljust(20))↪→
211 print((" Accel : "+printBool(health.accel)).ljust(15) + (" Global :

"+printBool(health.globe)).ljust(20))↪→
212 print((" Mag : "+printBool(health.mag)).ljust(15) + (" Home :

"+printBool(health.home)).ljust(20))↪→
213 print((" Level : "+printBool(health.level)).ljust(15) + (" Battery :

"+str(round(health.battery,5)).ljust(20)))↪→
214 print("--")
215

print("Uav_Ang".ljust(15)+"Mocap_Ang".ljust(15)+"Errors".ljust(15)+"Gains".ljust(10)+'
')

↪→
↪→

216 print("--")
217 print((' r: '+str(pr)).ljust(15) + (' r: '+str(mr)).ljust(15) +
218 (' ex: '+str(ex)).ljust(15) + (' kpx: '+str(kpx)).ljust(10)+' ')
219
220 print((' p: '+str(pp)).ljust(15) + (' p: '+str(mp)).ljust(15) +
221 (' ey: '+str(ey)).ljust(15) + (' kpy: '+str(kpy)).ljust(10)+' ')
222
223 print((' y: '+str(pw)).ljust(15) + (' y: '+str(my)).ljust(15) +
224 (' ez: '+str(ez)).ljust(15) + (' kpz: '+str(kpz)).ljust(10)+' ')
225
226 print("--")
227

print("Current_Pos".ljust(15)+"Target_Pos".ljust(15)+"Errors".ljust(15)+"Gains".ljust(10)+'
')

↪→
↪→

228 print("--")
229 print((' x: '+str(px)).ljust(15) + (' x: '+str(zzx)).ljust(15) +
230 (' exd: '+str(exd)).ljust(15) + (' kdx: '+str(kdx)).ljust(10)+' ')
231
232 print((' y: '+str(py)).ljust(15) + (' y: '+str(zzy)).ljust(15) +
233 (' eyd: '+str(eyd)).ljust(15) + (' kdy: '+str(kdy)).ljust(10)+' ')
234
235 print((' z: '+str(pz)).ljust(15) + (' z: '+str(zzz)).ljust(15) +
236 (' ezd: '+str(ezd)).ljust(15) + (' kdz: '+str(kdz)).ljust(10)+' ')
237
238 print("--")
239 print("Current_Vel".ljust(15)+("Yaw:

"+str(self.yaw.data)).ljust(30)+"Kill:"+str(self.kl.data).rjust(6))↪→
240 print("--")
241 print((' x: '+str(vx)).ljust(15) + (' T: '+str(t)).ljust(15) +
242 ('exi: '+str(exi)).ljust(15) + (' kix: '+str(kix)).ljust(10)+' ')
243
244 print((' y: '+str(vy)).ljust(15) + ('Baseline').ljust(15) +
245 ('eyi: '+str(eyi)).ljust(15) + (' kiy: '+str(kiy)).ljust(10)+' ')
246
247 print((' z: '+str(vz)).ljust(15) + (' T: '+str(bl)).ljust(15) +
248 ('ezi: '+str(ezi)).ljust(15) + (' kiz: '+str(kiz)).ljust(10)+' ')
249
250 def kill(self):
251 self.kl.data = True
252 self.bl.data = 0.0
253 def incKpz(self):
254 self.kp.z += 0.01
255
256 def decKpz(self):
257 self.kp.z -= 0.01
258
259 def incKpxy(self):
260 self.kp.x += 0.1
261 self.kp.y += 0.1
262
263 def decKpxy(self):
264 self.kp.x -= 0.1
265 self.kp.y -= 0.1
266
267 def incKdz(self):

112 A Source Code

268 self.kd.z += 0.01
269
270 def decKdz(self):
271 self.kd.z -= 0.01
272
273 def incKdxy(self):
274 self.kd.x += 0.1
275 self.kd.y += 0.1
276
277 def decKdxy(self):
278 self.kd.x -= 0.1
279 self.kd.y -= 0.1
280
281 def incKiz(self):
282 self.ki.z += 0.01
283
284 def decKiz(self):
285 self.ki.z -= 0.01
286
287 def incKixy(self):
288 self.ki.x += 0.01
289 self.ki.y += 0.01
290
291 def decKixy(self):
292 self.ki.x -= 0.01
293 self.ki.y -= 0.01
294
295 def incBl(self):
296 self.bl.data += 0.01
297
298 def decBl(self):
299 self.bl.data -= 0.01
300
301 def incZz(self):
302 self.zz.z += 0.12
303
304 def decZz(self):
305 self.zz.z -= 0.12
306
307 def incXx(self):
308 self.zz.x += 0.25
309
310 def decXx(self):
311 self.zz.x -= 0.25
312
313 def incYy(self):
314 self.zz.y += 0.25
315
316 def decYy(self):
317 self.zz.y -= 0.25
318
319 def start(self):
320 self.st.data = True
321
322 def incYaw(self):
323 self.yaw.data += 2.5
324
325 def decYaw(self):
326 self.yaw.data -= 2.5
327
328 def manExt(self):
329 os.system("rosrun offboard dynamixel_ctrl position:=1")
330
331 def manRet(self):
332 os.system("rosrun offboard dynamixel_ctrl position:=0")
333
334 def main():
335 global done
336 init_anykey()
337
338 rospy.init_node('test_ui', anonymous=True)

A Source Code 113

339
340 rate = rospy.Rate(5.0)
341
342 stat = Status()
343
344 rospy.Subscriber('health', test.Health, stat.healthCb)
345 rospy.Subscriber('attitude', geo.PointStamped, stat.attCb)
346 rospy.Subscriber('mocap_att', geo.PointStamped, stat.mattCb)
347 rospy.Subscriber('pose', geo.PointStamped, stat.posCb)
348 rospy.Subscriber('vel', geo.PointStamped, stat.velCb)
349 rospy.Subscriber('err', geo.PointStamped, stat.errCb)
350 rospy.Subscriber('erd', geo.PointStamped, stat.erdCb)
351 rospy.Subscriber('eri', geo.PointStamped, stat.eriCb)
352 rospy.Subscriber('thrust', smsg.Float32, stat.thrustCb)
353
354 rospy.Subscriber('baseline_', smsg.Float32, stat.baselineCb)
355 rospy.Subscriber('target_', geo.Point, stat.targetCb)
356 rospy.Subscriber('kill_', smsg.Bool, stat.killCb)
357 rospy.Subscriber('start_', smsg.Bool, stat.startCb)
358 rospy.Subscriber('yaw_target_', smsg.Float32, stat.yawCb)
359 intro()
360 stat.print_status(True)
361 while not done:
362 stat.print_status()
363 key = anykey()
364 if key != []:
365 for k in key:
366 if chr(k) == 'a':
367 stat.kill()
368 stat.publish()
369 done=True
370 #print("\n"*13)
371 elif chr(k) == 'q':
372 stat.kill()
373 elif chr(k) == 'r':
374 stat.manExt()
375 elif chr(k) == 'f':
376 stat.manRet()
377 elif chr(k) == 't':
378 stat.incZz()
379 elif chr(k) == 'g':
380 stat.decZz()
381 elif chr(k) == 'z':
382 stat.incXx()
383 elif chr(k) == 'x':
384 stat.decXx()
385 elif chr(k) == 'y':
386 stat.incKpxy()
387 elif chr(k) == 'h':
388 stat.decKpxy()
389 elif chr(k) == 'u':
390 stat.incKdxy()
391 elif chr(k) == 'j':
392 stat.decKdxy()
393 elif chr(k) == 'i':
394 stat.incKpz()
395 elif chr(k) == 'k':
396 stat.decKpz()
397 elif chr(k) == 'o':
398 stat.incKdz()
399 elif chr(k) == 'l':
400 stat.decKdz()
401 elif chr(k) == 'n':
402 stat.incKiz()
403 elif chr(k) == 'm':
404 stat.decKiz()
405 elif chr(k) == 'v':

114 A Source Code

406 stat.incKixy()
407 elif chr(k) == 'b':
408 stat.decKixy()
409 elif chr(k) == 'c':
410 stat.start()
411 elif chr(k) == 'e':
412 stat.incYaw()
413 elif chr(k) == 'd':
414 stat.decYaw()
415
416
417
418 stat.publish()
419 rate.sleep()
420
421 if __name__ == '__main__':
422 try:
423 main()
424 except rospy.ROSInterruptException:
425 pass

Listing 6: drone_ui.py

A Source Code 115

1 <launch>
2 <!--group ns="HexyBoi"-->
3
4 <!--include file="$(find offboard)/launch/dynamixel.launch"/-->
5 <arg name="drone_param_file"
6 default="$(find offboard)/config/drone.yaml" />
7
8 <node pkg="offboard"
9 type="ros_interface"

10 name="fly"
11 output="screen">
12
13 <param name="~url" type="string" value="serial:///dev/ttyACM0" />
14 <param name="~mode" type="int" value="0"/>
15 <!--param name="~mass" type="double" value="2.2"/-->
16 <!--param name="~length" type="double" value="1"/-->
17 <rosparam file="$(arg drone_param_file)" command="load" />
18 </node>
19
20 <!-- /group-->
21 </launch>

Listing 7: fly.launch

116 A Source Code

1 <launch>
2 <!-- Pass in mocap_config_file:=/path/to/config.yaml to change options. -->
3 <arg name="mocap_config_file"
4 default="$(find offboard)/config/mocap.yaml" />
5
6 <arg name="drone_name"
7 default="HexyBoi" />
8
9 <!-- Setup machine to launch nodes directly on drone -->

10 <machine name="rpi"
11 user="pi"
12 address="hexyboi"
13 password="raspberry"
14 env-loader="/home/pi/catkin_ws/env.sh"/>
15
16 <group ns="$(arg drone_name)">
17
18 <!-- Mocap Data -->
19 <node pkg="mocap_optitrack"
20 type="mocap_node"
21 name="mocap_node"
22 respawn="false"
23 launch-prefix=""
24 required="true">
25 <rosparam file="$(arg mocap_config_file)" command="load" />
26 </node>
27
28 <!-- Publish fixed coordinate systems transform -->
29 <node pkg="tf"
30 type="static_transform_publisher"
31 name="static_transform"
32 args="0.0 0.0 0.0 0.0 0.0 3.14159 base_link $(arg drone_name) 10">
33 </node>
34
35 <!-- Start UI -->
36 <node pkg="offboard"
37 type="drone_ui.py"
38 name="clui"
39 output="screen"
40 required="true">
41 </node>
42
43
44 <!-- Start Flight Node on Drone
45 <node machine="rpi"
46 pkg="offboard"
47 type="ros_interface"
48 name="flight">
49 <param name="~url" type="string" value="serial:///dev/ttyACM0" />
50 </node>
51 -->
52 </group>
53
54 </launch>

Listing 8: startup.launch

A Source Code 117

1 #
2 # Definition of all trackable objects
3 # Identifier corresponds to Trackable ID set in Tracking Tools
4 #
5 rigid_bodies:
6 '1':
7 pose: mocap
8 pose2d: mocap2d
9 child_frame_id: base_link

10 parent_frame_id: world
11 use_new_coordinates: false
12 optitrack_config:
13 multicast_address: 239.255.42.99

Listing 9: mocap.yaml
1 #
2 #Drone Parameters
3 #
4 mass: 2.2
5 length: 1.07

Listing 10: drone.yaml
1 bool gyro
2 bool accel
3 bool mag
4 bool level
5 bool local
6 bool globe
7 bool home
8 float32 battery

Listing 11: Health.msg

118

Bibliography
[1] Mike Allenspach et al. “Design and optimal control of a tiltrotor micro-aerial vehi-

cle for efficient omnidirectional flight.” eng. In: International Journal of Robotics
Research 39.10-11 (2020), pages 1305–1325. issn: 17413176, 02783649. doi: 10.
1177/0278364920943654.

[2] Auterion. The story of PX4 and Pixhawk. https://auterion.com/company/the-
history-of-pixhawk/. [Online; accessed 11-April-2021]. 2020.

[3] Karen Bodie et al. “An Omnidirectional Aerial Manipulation Platform for Contact-
Based Inspection.” eng. In: Robotics: Science and Systems Xv (2019).

[4] Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Nonlinear Quadrocopter
Attitude Control. Technical Report. en. Technical report. Zürich, 2013. doi: 10.
3929/ethz-a-009970340.

[5] Xilun Ding et al. “A review of aerial manipulation of small-scale rotorcraft un-
manned robotic systems.” eng. In: Chinese Journal of Aeronautics 32.1 (2019),
pages 200–214. issn: 10009361, 25889230. doi: 10.1016/j.cja.2018.05.012.

[6] Simulink Documentation. Simulation and Model-Based Design. [Online; accessed
9-April-2021]. 2020. url: https://www.mathworks.com/products/simulink.
html.

[7] Engineering ToolBox. Friction and Friction Coefficients. https : / / www .
engineeringtoolbox.com/friction-coefficients-d_778.html. [Online; ac-
cessed 9-April-2021]. 2004.

[8] M. Fumagalli et al. “Modeling and Control of a Flying Robot for Contact Inspec-
tion.” eng. In: 2012 Ieee/rsj International Conference on Intelligent Robots and
Systems (iros) (2012), pages 3532–3537. issn: 21530866, 21530858.

[9] A. E. Jimenez-Cano et al. “Aerial manipulator for structure inspection by contact
from the underside.” In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2015, pages 1879–1884. doi: 10.1109/IROS.2015.
7353623.

[10] Mina Kamel et al. “The Voliro Omniorientational Hexacopter: An Agile and Ma-
neuverable Tiltable-Rotor Aerial Vehicle.” eng. In: Ieee Robotics and Automation
Magazine 25.4 (2018), page 8485627. issn: 10709932, 1558223x. doi: 10.1109/
MRA.2018.2866758.

https://doi.org/10.1177/0278364920943654
https://doi.org/10.1177/0278364920943654
https://auterion.com/company/the-history-of-pixhawk/
https://auterion.com/company/the-history-of-pixhawk/
https://doi.org/10.3929/ethz-a-009970340
https://doi.org/10.3929/ethz-a-009970340
https://doi.org/10.1016/j.cja.2018.05.012
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://www.engineeringtoolbox.com/friction-coefficients-d_778.html
https://doi.org/10.1109/IROS.2015.7353623
https://doi.org/10.1109/IROS.2015.7353623
https://doi.org/10.1109/MRA.2018.2866758
https://doi.org/10.1109/MRA.2018.2866758

120 Bibliography

[11] Suseong Kim, Hoseong Seo, and H. Jin Kim. “Operating an unknown drawer using
an aerial manipulator.” eng. In: 2015 Ieee International Conference on Robotics and
Automation (icra) (2015), pages 5503–5508. doi: 10.1109/ICRA.2015.7139968.

[12] A. Koubâa et al. “Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey.” In:
IEEE Access 7 (2019), pages 87658–87680. doi: 10.1109/ACCESS.2019.2924410.

[13] Vijay Kumar and Nathan Michael. “Opportunities and challenges with au-
tonomous micro aerial vehicles.” eng. In: Springer Tracts in Advanced Robotics
100 (2017), pages 41–58. issn: 1610742x, 16107438. doi: 10.1007/978-3-319-
29363-9_3.

[14] Teppo Luukkonen. Modelling and control of quadcopter. Technical report Mat-
2.4108. Espoo: Aalto University, School of Science, August 2011.

[15] Reza Olfati-Saber. “Nonlinear control of underactuated mechanical systems with
application to robotics and aerospace vehicles.” eng. In: (2001).

[16] M. Orsag et al. “Dexterous Aerial Robots—Mobile Manipulation Using Unmanned
Aerial Systems.” In: IEEE Transactions on Robotics 33.6 (2017), pages 1453–1466.
doi: 10.1109/TRO.2017.2750693.

[17] Sangyul Park et al. “ODAR: Aerial Manipulation Platform Enabling Omnidirec-
tional Wrench Generation.” eng. In: Ieee/asme Transactions on Mechatronics 23.4
(2018), pages 1–1. issn: 1941014x, 10834435. doi: 10.1109/TMECH.2018.2848255.

[18] PX4 contributors. PX4 User Guide. https://docs.px4.io/master/en/. [Online;
accessed 7-April-2021]. 2021.

[19] Morgan Quigley et al. “ROS: an open-source Robot Operating System.” In: ICRA
workshop on open source software. Volume 3. 3.2. Kobe, Japan. 2009, page 5.

[20] ETH Zurich Robotic Systems Lab. Robot Dynamics Lecture Notes. https://ethz.
ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-
systems / rsl - dam / documents / RobotDynamics2017 / RD _ HS2017script . pdf.
[Online; accessed 11-April-2021]. 2017.

[21] Fabio Ruggiero, Vincenzo Lippiello, and Anibal Ollero. “Aerial manipulation: A lit-
erature review.” In: IEEE Robotics and Automation Letters 3.3 (2018), pages 1957–
1964.

[22] Markus Ryll et al. “6D interaction control with aerial robots: The flying end-
effector paradigm.” und. In: International Journal of Robotics Research 38.9 (2019),
pages 1045–1062. issn: 17413176, 02783649. doi: 10.1177/0278364919856694.

[23] Inc. The MathWorks. Simscape Multibody. [Online; accessed 9-April-2021]. Natick,
Massachusetts, United State, 2021. url: https://www.mathworks.com/help/
physmod/sm.

[24] Marco Tognon et al. “A Truly-Redundant Aerial Manipulator System With Ap-
plication to Push-and-Slide Inspection in Industrial Plants.” eng. In: Ieee Robotics
and Automation Letters 4.2 (2019), pages 1846–1851. issn: 23773774, 23773766.
doi: 10.1109/LRA.2019.2895880.

https://doi.org/10.1109/ICRA.2015.7139968
https://doi.org/10.1109/ACCESS.2019.2924410
https://doi.org/10.1007/978-3-319-29363-9_3
https://doi.org/10.1007/978-3-319-29363-9_3
https://doi.org/10.1109/TRO.2017.2750693
https://doi.org/10.1109/TMECH.2018.2848255
https://docs.px4.io/master/en/
https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2017/RD_HS2017script.pdf
https://doi.org/10.1177/0278364919856694
https://www.mathworks.com/help/physmod/sm
https://www.mathworks.com/help/physmod/sm
https://doi.org/10.1109/LRA.2019.2895880

Bibliography 121

[25] Miguel Ángel Trujillo et al. “Novel Aerial Manipulator for Accurate and Robust
Industrial NDT Contact Inspection: A New Tool for the Oil and Gas Inspec-
tion Industry.” und. In: Sensors (basel, Switzerland) 19.6 (2019), page 1305. issn:
14248220, 14243210. doi: 10.3390/s19061305.

[26] Hideyuki Tsukagoshi et al. “Aerial manipulator with perching and door-opening
capability.” eng. In: Proceedings - Ieee International Conference on Robotics and
Automation 2015-.June (2015), page 7139845. issn: 10504729. doi: 10.1109/ICRA.
2015.7139845.

[27] Akash Varshney, Deeksha Gupta, and Bharti Dwivedi. “Speed response of brush-
less DC motor using fuzzy PID controller under varying load condition.” In: Jour-
nal of Electrical Systems and Information Technology 4.2 (2017), pages 310–321.
issn: 2314-7172. doi: https://doi.org/10.1016/j.jesit.2016.12.014. url:
https://www.sciencedirect.com/science/article/pii/S2314717217300077.

[28] H. W. Wopereis et al. “Application of substantial and sustained force to verti-
cal surfaces using a quadrotor.” eng. In: 2017 Ieee International Conference on
Robotics and Automation (icra) (2017), pages 2704–2709. doi: 10.1109/ICRA.
2017.7989314.

[29] Han W. Wopereis et al. “Multimodal Aerial Locomotion: An Approach to Ac-
tive Tool Handling.” eng. In: Ieee Robotics and Automation Magazine 25.4 (2018),
pages 57–65. issn: 10709932, 1558223x. doi: 10.1109/MRA.2018.2869527.

https://doi.org/10.3390/s19061305
https://doi.org/10.1109/ICRA.2015.7139845
https://doi.org/10.1109/ICRA.2015.7139845
https://doi.org/https://doi.org/10.1016/j.jesit.2016.12.014
https://www.sciencedirect.com/science/article/pii/S2314717217300077
https://doi.org/10.1109/ICRA.2017.7989314
https://doi.org/10.1109/ICRA.2017.7989314
https://doi.org/10.1109/MRA.2018.2869527

DTU Electrical Engineering
Department of Electrical Engineering
Technical University of Denmark
Ørsteds Plads
Building 348
DK-2800 Kgs. Lyngby
Denmark
Tel: (+45) 45 25 38 00
www.elektro.dtu.dk

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Background
	3 Free Flight
	3.1 Dynamic Model
	3.2 Simulation of the Dynamic Model
	3.3 Controllers
	3.4 Test Setup
	3.5 Verification
	3.6 Summary

	4 Contact
	4.1 Dynamic Model
	4.2 Controller
	4.3 Simulation
	4.4 Experimentation
	4.5 1-DOF Manipulator
	4.6 Discussion

	5 Conclusion
	A Source Code
	Bibliography

